
c©2003, A. Brinton Cooper III 1

6.0 Decoding BCH and RS Codes

6.1 Conventional Decoding

• based on roots of codewords;

• syndrome polynomials are computed;

• solutions lead to

– error locator polynomial - roots are the locations of the errors;

– error magnitude polynomial - solutions yield the values of the

errors for nonbinary codes.

• “decoding algorithm” usually means the method for obtaining

these polynomials.



c©2003, A. Brinton Cooper III 2

• Substitute roots of g(x) into r(x) ⇒ 2t equations.

• Solve this “overspecified” system for a polynomial, roots of which

are the error locations.

• Also solve for set of error magnitudes.

• Typically, these decoders decode correctly up to the design

distance.



c©2003, A. Brinton Cooper III 3

6.2 Basics of Decoding BCH and RS Codes

• Receive:

r(x) = c(x) + e(x) =
n−1∑

i=0

ri · xi

• where

c(αj) = 0, j = 1, 2, . . . , 2t.

• Compute syndromes:

Sj = r(αj) = e(αj) = e0 + e1α
j + e2α

2j + · · ·+ en−1α
(n−1)j ,

• where ei ∈ {0, 1}.



c©2003, A. Brinton Cooper III 4

• Suppose errors occurred at locations i1, i2, . . . , i`, . . . , iν , ν ≤ t.

• For now, consider the binary case.

ei`
= 1, ` = 1, 2, . . . , ν ≤ t

0, otherwise.

• Then,

Sj = e(αj) = αji1 + αji2 + · · ·+ αjiν , j = 1, 2, . . . , 2ν

• We call i1, i2, . . . , iν the error locators.

• Notation: Let X` = αi` . Then,

Sj =
ν∑

`=1

Xj
` , j = 1, 2, . . . , 2t.



c©2003, A. Brinton Cooper III 5

Expanding gives,

S1 = X1 + X2 + · · ·+ Xν

S2 = X2
1 + X2

2 + · · ·+ X2
ν

...

S2t = X2t
1 + X2t

2 + · · ·+ X2t
ν

Definition 1 These are called the power sum symmetric functions

of the {Xi}.
¤



c©2003, A. Brinton Cooper III 6

Note that ν is unknown to the decoder.

Let

Λ(x) = (1−X1x)(1−X2x) · · · (1−Xνx)

=
ν∑

i=0

Λix
i

Definition 2 Λ(x) as defined above is called the error locator

polynomial.

¤



c©2003, A. Brinton Cooper III 7

Clearly

Λ(1/X`) = 0, ` = 1, 2, . . . , ν

and

Λ0 = 1

Λν = X1X2 · · ·Xν

Λ1 = X1 + X2 + · · ·+ Xν

Λ2 =
∑

i<j

XiXj

...

Definition 3 These {Λi} are called the elementary symmetric

functions of the error locators.



c©2003, A. Brinton Cooper III 8

Newton’s identities relate the elementary symmetric functions and

the power sum symmetric functions:

S1 + Λ1 = 0

S3 + Λ1S2 + Λ2S1 + Λ3 = 0

S5 + Λ1S4 + Λ2S3 + Λ3S2 + Λ4S1 + Λ5 = 0
...

S2t−1 + Λ1S2t−2 + Λ2S2t−3 + · · ·+ ΛtSt−1 = 0

Example: Suppose ν = 1. Then

Sj = Xj
1 , j = 1, 2.

from which we learn S1 = X1. The error locator polynomial becomes:

Λ(x) = (1−X1x) = 1− S1x.



c©2003, A. Brinton Cooper III 9

Example Suppose ν = 2.

• Then the odd syndromes are:

S1 = X1 + X2

S3 = X3
1 + X3

3

• and the error locator polynomial is:

Λ(x) = (1−X1x)(1−X2x)

= 1 + (X1 + X2)x + X1X2x
2

• Clearly, Λ0 = 1, Λ1 = S1.

• Cubing S1 and solving simultaneously with S3 gives

Λ2 =
S3 + S3

1

S1
.



c©2003, A. Brinton Cooper III 10

6.3 Peterson’s Algorithm

6.3.1 Binary Codes

Newton’s Identities in matrix form are:




1 0 0 0 · · · 0

S2 S1 1 0 · · · 0
...

S2t−2 S2t−3 S2t−4 S2t−5 · · · St−1



·




Λ1

Λ2

Λ3

...

Λt




=




−S1

−S3

−S5

...

−S2t−1




,

which we can also write as

A ·Λ = −S (1)



c©2003, A. Brinton Cooper III 11

Properties:

• A (known) must be non-singular in order to solve for Λ.

• A is non-singular if t or t− 1 errors have occurred.

• More generally,

Theorem (Berlekamp) If A is t× t, then the dimension of the

null space of the row space of A is

∣∣∣∣
⌊

t− deg Λ(x)
2

⌋∣∣∣∣
• Notice that if A is of full rank, the foregoing evaluates to 0.



c©2003, A. Brinton Cooper III 12

Peterson’s algorithm:

1. Write down Newton’s Identities (N.I.) as above.

2. If det[A] = 0, remove 2 rightmost columns and 2 bottom rows.

3. Test and repeat until det[A] 6= 0

4. Invert and solve for the {Λi}.
5. Find roots of Λ(x).

• If roots are not distinct or Λ(x) does not have roots in the

desired field, go to 9

6. Complement bit positions in received vector that correspond to

roots of Λ(x).

7. If the corrected word does not satisfy all syndromes, go to 9

8. Output corrected word. STOP

9. Declare decoder failure. STOP



c©2003, A. Brinton Cooper III 13

Some Decoding Examples

Direct Decoding




1 0 0 0 · · · 0

S2 S1 1 0 · · · 0
...

S2t−2 S2t−3 S2t−4 S2t−5 · · · St−1



·




Λ1

Λ2

Λ3

...

Λt




=




−S1

−S3

−S5

...

−S2t−1




, (3)

or,

A ·Λ = −S

For simple cases, we solve (3) directly:

Single error correction (t = 1)

Λ1 = S1



c©2003, A. Brinton Cooper III 14

Double error correction: (t = 2)

 1 0

S2 S1


 ·


Λ1

Λ2


 =


−S1

−S3


 ,

Λ1 = S1

Λ2 =
S3 + S3

1

S1



c©2003, A. Brinton Cooper III 15

Triple error correction: (t = 3)



1 0 0

S2 S1 1

S4 S3 S2


 ·




Λ1

Λ2

Λ3


 =



−S1

−S3

−S5


 ,

Λ1 = S1

Λ2 =
S2

1S3 + S5

S3
1 + S3

Λ3 = (S3
1 + S3) + S1Λ2



c©2003, A. Brinton Cooper III 16

Quadruple error correction: (t = 4)



1 0 0 0

S2 S1 1 0

S4 S3 S2 S1

S6 S5 S4 S3



·




Λ1

Λ2

Λ3

Λ4




=




−S1

−S3

−S5

−S7




,

Λ1 = S1

Λ2 =
S1(S7 + S7

1) + S3(S5
1 + S5)

S3(S3
1 + S3) + S1(S5

1 + S5)

Λ3 = (S3
1 + S3) + S1Λ2

λ4 =
(S5 + S2

1S3) + (S3
1 + S3)Λ2

S1



c©2003, A. Brinton Cooper III 17

Quintuple error correction: (t = 5)

Λ1 = S1

Λ2 =
(S3

1 + S3)[(S9
1 + S9) + S4

1(S5 + S2
1S3) + S2

3(S3
1 + S3)]

(S3
1 + S3)[(S7 + S7

1) + S1S3(S3
1 + S3)] + (S5 + S2

1S3)(S5
1 + S5)

+
[(S5

1 + S5)(S7 + S7
1) + S1(S2

3 + S1S5)]
(S3

1 + S3)[(S7 + S7
1) + S1S3(S3

1 + S3)] + (S5 + S2
1S3)(S5

1 + S5)

Λ3 = (S3
1 + S3) + S1Λ2

Λ4 =
(S9

1 + S9) + S2
3(S3

1 + S3) + S4
1(S5 + S2

1S3)
(S5

1 + S5)

+
[(S7 + S7

1) + S1S3(S3
1 + S3)]Λ2

(S5
1 + S5)

Λ5 = (S5 + S2
1S3) + S1Λ4 + (S3

1 + S3)Λ2



c©2003, A. Brinton Cooper III 18

Suggested study problem

• Design a BCH code with n = 7 and t = 4.

• Select some code word c from your code.

• For t = 0 to t = 2 do

– Select an error vector e of weight t.

– Form the received vector r = c + e

– Decode r using the direct method above.



c©2003, A. Brinton Cooper III 19

Double Error Correction using Peterson’s Algorithm

For n = 31 let

g(x) = 1 + x3 + x5 + x6 + x8 + x9 + x10

the roots of which include {α, α2, α3, α4}.
Let the received vector r be

r = (0010000110011000000000000000000)

or

r(x) = x2 + x7 + x8 + x11 + x12

You should verify that

S1 = r(α) = α7

S2 = r(α2) = α14

S3 = r(α3) = α8

S4 = r(α4) = α28



c©2003, A. Brinton Cooper III 20

Since t = 2, we use the foregoing to get

Λ1 = S1 = α7

Λ2 =
S3 + S3

1

S1
= α15

Then, the error locator polynomial is

Λ(x) = 1 + α7x + α15x2

= (1 + α5x)(1 + α10x)

which indicates that the errors are at the 5th and 10th places of r, and

that the transmitted codeword most likely was

c = 001001011011100000000000000000)

and

c(x) = x2 + x5 + x7 + x8 + x10 + x11 + x12

= x2g(x)



c©2003, A. Brinton Cooper III 21

Another example

g(x) = 1 + x + x2 + x3 + x5 + x7 + x8 + x9 + x10 + x11 + x15

where, again n = 31 but now, t = 3.

Suppose

r(x) = x10.

What was the most likely transmitted word?

· · ·



c©2003, A. Brinton Cooper III 22

The all-zero word!..

Why?



c©2003, A. Brinton Cooper III 23

The Chien Search: Solving the error locator polynomial

1. Repeatedly multiply each Λi by αi.

2. Sum each set of products to get Ai = Λ(αi)− 1 =
∑t

j=1 Λjα
ij .

3. If Λ(αj) = 0 then

• Ai = 1 and an error occurred at the coordinate associated with

α−j = αn−1.

• So, add 1 to received bit rn−j .

4. Otherwise do nothing.

Verification:

• Use similar circuit with Λi replaced by ci (decoder output) and

include c0 = 1.

• This tests for whether the powers of α are roots of c(x).



c©2003, A. Brinton Cooper III 24

r0,r1,...,rn-1 + Output buffer

Λ1 Λ2 Λt

Verify

+

X X X

α α2 αt

-----

1 if error,
else 0

c0,c1,...,cn-1

FAIL
Ai

      t
Ai=ΣΛjα

ij

     j=1



c©2003, A. Brinton Cooper III 25

6.3.2 Peterson-Gorenstein-Zierler Algorithm for Non-binary

Codes

• As before, write syndromes:

Sj = e0 + e1α
j + e2α

2j + · · ·+ en−1α
(n−1)j , j = 1, . . . , 2t.

• Expand in matrix form:

S1 = ei1X1 + ei2X2 + · · ·+ eiν Xν

S2 = ei1X
2
1 + ei2X

2
2 + · · ·+ eiν X2

ν

S3 = ei1X
3
1 + ei2X

3
2 + · · ·+ eiν

X3
ν (4)

...

S2t = ei1X
2t
1 + ei2X

2t
2 + · · ·+ eiν X2t

ν



c©2003, A. Brinton Cooper III 26

• Decoder must compute:

– Error locators

{X`, ` = 1, 2, . . . , ν}
– Error magnitudes

{ei`
, ` = 1, 2, . . . , ν}

• (Recall that the {ei`
} are known in the binary case.)

• But: The syndromes are no longer power-sum symmetric

functions.

• Use different method to get sets of linear functions in the

unknown locators and magnitudes.



c©2003, A. Brinton Cooper III 27

Recall:

Λ(x) =
ν∏

`=1

(1−X`x).

Therefore, for some error locator X`:

Λ(X−1
` ) = ΛνX−ν

` + Λν−1X
−(ν−1)
` + · · ·+ Λ0 = 0

Then form
ν∑

`=1

ei`
Xj

` Λ(X−1
` ),

and substitute

Sj = ei1X
j
1 + ei2X

j
2 + · · ·+ eiν

Xj
ν .

This gives

ΛνSj−ν + Λν−1Sj−ν+1 + · · ·+ Λ1.Sj−1 = −Sj .

Also, recall Λ0 = 1.



c©2003, A. Brinton Cooper III 28

Let ν = t and expand in matrix form:

A′Λ =




S1 S2 · · · St

S2 S3 · · · St+1

...

St−1 St · · · S2t−2

St st+1 · · · S2t−1







Λt

Λt−1

...

Λ2

Λ1







−St+1

−St+2

...

−S2t−1

−S2t




One can show:

• A′ is nonsingular if exactly t errors occurred.

• A′ is singular if ν < t errors occurred.

• As before, removal of appropriate numbers of rows and columns

gives nonsingular matrix and reveals actual number of errors.



c©2003, A. Brinton Cooper III 29

Outline of PGZ Algorithm

1. From the {Sj}, compute A′.

(a) If |A′| = 0, delete rightmost column and entire bottom row.

(b) Repeat until nonsingular.

2. Solve for Λ; construct Λ(x).

3. If roots of Λ(x) are not in the desired field or are not distinct,

declare decoding failure. STOP

4. Substitute {X`} into the {Sj}. Reduce to matrix form:

Be =




X1 X2 · · · Xν

X2
1 X2

2 · · · X2
ν

...

Xν
1 Xν

2 · · · Xν
ν







ei1

ei2

...

eiν




=




S1

S2

...

Sν




5. Solve for {ei`
} Output corrected word. STOP



c©2003, A. Brinton Cooper III 30

6.4 Berlekamp’s Algorithm for Binary (BCH) Codes

• Peterson’s alg: # of GF multiplications ∼ ν2

• Cumbersome for ν >∼ 6

• Complexity of Berlekamp algorithm ∼ linear with ν.

• Introduce Berlekamp’s for binary codes

• Study Massey’s formulation of Berlekamp’s for non-binary codes.



c©2003, A. Brinton Cooper III 31

6.4.1 Introduction and General Approach

Decoding steps common to most BCH/RS algorithms:

1. Calculate syndromes: S1, S2, . . . , S2t

2. Calculate Λ1, Λ2, . . . , Λt from the {Sj}.

3. Calculate error locations {X`} from the {Λi}

4. Calculate error values {Y`} from the {X`}, {Sj}. (Non-binary

case)



c©2003, A. Brinton Cooper III 32

6.4.2 Berlekamp’s iterative method for binary codes (offered

without proof). Define a syndrome polynomial to be

S(x) = S1x + S2x
2 + · · ·+ S2t+1x

2t+1 + · · ·
of arbitrarily large degree. Now let

Ω(x) 4= [1 + S(x)]Λ(x)

= (1 + S1x + S2x
2 + · · ·+ S2t+1x

2t+1 + · · · )
· (1 + Λ1x + Λ2x

2 + · · · )
= 1 + (S1 + Λ1)x + (S2 + S1Λ1 + Λ2)x2

+ (S3 + S2Λ1 + S1Λ2 + Λ3)x3 + · · ·
= 1 + Ω1x + Ω2x

2 + Ω3x
3 + · · ·

Notes:

1. Comparison of the coefficients with Newton’s identities shows that

the coefficients of the odd powers of x are identically zero.



c©2003, A. Brinton Cooper III 33

2. Although the polynomials have arbitrary degree, only the first 2t

of the {Si} are known.

Therefore, we write

Ω(x) = [1 + S(x)]Λ(x) mod x2t+1

= 1 + Ω2x
2 + Ω4x

4 + · · · mod x2t+1

Berlekamp’s iterative algorithm solves for Λ(x) iteratively, by

breaking the problem down into a set of steps,

[1 + S(x)]Λ(2k)(x) = 1 + Ω2x
2 + Ω4x

4 + · · · mod x2t+1

for k from 1 to t.



c©2003, A. Brinton Cooper III 34

1. Initialize k = 0, Λ(0)(x) = 1, T (0) = 1.

2. Let ∆(2k) be the coefficient of x2k+1 in Λ(2k)[1 + S(x)].

3. Compute

Λ2k+2(x) = Λ(2k)(x) + ∆(2k)[x · T (2k)(x)]

4. (a) if ∆(2k) = 0 or deg[Λ(2k)(x)] > k

T (2k+2)(x) = x2T (2k)(x)

(b) else if ∆(2k) 6= 0 and deg[Λ(2k)(x)] ≤ k

T (2k+2)(x) =
T (2k)(x)
∆(2k)

(c) Set k = k + 1. If k < t go to step 2.

(d) Apply Chien search, test the roots, output status, STOP.



c©2003, A. Brinton Cooper III 35

6.4.3 Examples:

1. (15, 5), 3-error correcting binary BCH code (6.6, p 215, L&C)

• Receive r(x) = x3 + x5 + x12. Then

S1 = S2 = S4 = 1 S3 = α10

S5 = α10 S6 = α5

• Initialize k = 0, Λ(0) = 1, T (0)(x) = 1.

• ∆(0) is the coefficient of x in

Λ(0)(x)[1 + S1x + · · · ]

So, ∆(0) = S1 = 1

k Λ(2k) ∆(2k) T (2k)

0 1 S1 = 1 1



c©2003, A. Brinton Cooper III 36

Λ(2)(x) = Λ(0)(x) + ∆(0)[x · T (0)(x)]

= 1 + S1 · x · 1
= 1 + S1x

• k = k + 1 = 1. ∆(2) = coefficient of x3 in

Λ(2)(x)[1 + S1x + S2x
2 + S3x

3 + · · · ].
Or ∆(2) = S1S2 + S3 = S3

1 + S3 = α5. And

T (2)(x) =
x · 1
S1

= x

So, now we have...

k Λ(2k) ∆(2k) T (2k)

0 1 S1 = 1 1

1 1 + x α5 x



c©2003, A. Brinton Cooper III 37

Λ(4)(x) = Λ(2)(x) + ∆(2)[x · T (2)(x)]

= 1 + x + α5 · x · x
= 1 + x + α5x2

• k = k + 1 = 2 and ∆(4) = the coefficient of x5 in

Λ(4)(x)[1 + S1x + S2x
2 + S3x

3 + S4x
4 + S5x

5 + · · · ]

Or ∆(4) = S5 + S4 + α5 · S3 = α10.

T (4)(x) =
x · Λ(2)(x)

∆(2)

= α10x + α10x2



c©2003, A. Brinton Cooper III 38

k Λ(2k) ∆(2k) T (2k)

0 1 S1 = 1 1

1 1 + x α5 x

2 1 + x + α5x2 α10 α10x + α10x2

• k = k + 1 = 3

Λ(6)(x) = Λ(4)(x) + ∆(4)(x)[x · T (4)(x)]

= 1 + x + α5x2 + α10 · x(α10x + α10x2)

= 1 + α + α5x3



c©2003, A. Brinton Cooper III 39

k Λ(2k) ∆(2k) T (2k)

0 1 S1 = 1 1

1 1 + x α5 x

2 1 + x + α5x2 α10 α10x + α10x2

3 1 + α + α5x3 −−− −−−



c©2003, A. Brinton Cooper III 40

2. (31, 16), 3-error correcting binary BCH code.

• The 3-error correcting (31, 16) binary BCH code;

• Consecutive roots are α, α2, . . . , α6 where α is primitive in

GF (32).
r(x) = 1 + x9 + x11 + x14

Using mα(x) = 1 + x2 + x5 we get

S1 = r(α) = 1 + α9 + α11 + α14 = 1

S2 = r(α2) = 1

S3 = r(α3) = 1 + α3

S4 = 1

S5 = α2 + α3

S6 = 1 + α + α3



c©2003, A. Brinton Cooper III 41

and

S(x) = x + x2 + (1 + α3)x3 + x4 + (α2 + α3)x5 + (1 + α + α3)x6

= x + x2 + α29x3 + x4 + α23x5 + α27x6

Exercise (optional): Using Berlekamp’s iterative method, try to

derive the error locator polynomial,

Λ(x) = 1 + x + α16x2 + α17x3.



c©2003, A. Brinton Cooper III 42

If more than t errors occur...

1. Alg. can terminate with Λ(x) of correct degree and roots (RARE).

2. Λ(x) can decode to (incorrect but) closest code word.

3. Λ(x) will have degree ν ≤ t but fewer than ν distinct roots,

making it an illegitimate error locator polynomial.



c©2003, A. Brinton Cooper III 43

6.4.4 The Berlekamp-Massey Algorithm for nonbinary codes

• For binary codes, we used Berlekamp’s formulation of his decoder.

• For non-binary codes, we will examine Massey’s explanation of

Berlekamp’s iterative algorithm.

• Begin with the recursion derived for the PGZ Algorithm:

ΛνSj−ν + Λν−1Sj−ν+1 + · · ·+ Λ1Sj−1 = −Sj

• This describes the operation of a linear feedback shift register

(LFSR).



c©2003, A. Brinton Cooper III 44

X

Sj-tSj-2Sj-1

−Λ1 −Λ2 −Λt−1 −Λt

Sj-t-1, Sj-t-2,...

Figure 1: LFSR to genetrate sequence of syndromes.

• Massey showed that determining coefficients of E.L.P. from

syndromes (Berlekamp) is equivalent to synthesizing the minimum

length FSR that generates the syndrome sequence.



c©2003, A. Brinton Cooper III 45

• BMA algorithm is used throughout Computer Science to design a

minimum length FSR to generate any given sequence.

• This minimum length is often known as the complexity of the

sequence.



c©2003, A. Brinton Cooper III 46

Preliminaries

1. Terminology:

• Λ(x) called the connection polynomial of the LFSR.

• T (x) is the correction polynomial.

• ∆(2k) is the discrepancy.

• L is the length of the LFSR.

• The process is indexed by k.



c©2003, A. Brinton Cooper III 47

2. Objective: Find the Λ(x) for a LFSR that generates

St+1, St+2, . . . when initialized with S1, S2, . . . , St.

3. Outline of Algorithm:

(a) Postulate the shortest possible LFSR.

(b) Try to generate the entire syndrome sequence.

(c) Compare LFSR output with correct syndromes.

(d) When discrepancy is observed

i. modify LFSR according to prescribed rule;

ii. re-start LFSR

(e) Continue to the next discrepancy or to the end.



c©2003, A. Brinton Cooper III 48

Details of BMA

1. Compute syndromes S1, · · · , S2t.

2. Initialize:

k = 0

Λ(0)(x) = 1

L = 0

T (x) = x

3. k = k = 1; Compute discrepancy.

∆(k) = Sk −
L∑

i=1

Λ(k−1)
i Sk−1.

4. If ∆(k) = 0, GOTO 8. ELSE: continue.



c©2003, A. Brinton Cooper III 49

5. Modify connection polynomial.

Λ(k)(x) = Λ(k−1)(x)−∆(k)T (x)

6. If 2L ≥ k, GOTO 8. ELSE: continue.

7. Change register length; update correction term.

L = k − L

T (x) = Λ(k−1)(x)/∆(k)

T (x) = x · T (x)

8. If k < 2t GOTO 3. ELSE: continue.

9. Solve Λ(x).



c©2003, A. Brinton Cooper III 50

(a) If roots are distinct and in correct field

• find error magnitudes;

• correct corresponding locations in r(x);
• END

(b) Otherwise

• Declare decoding FAILURE.

• STOP


