6.0 Decoding BCH and RS Codes

6.1 Conventional Decoding

- based on roots of codewords;
- syndrome polynomials are computed;
- solutions lead to
 - error locator polynomial roots are the locations of the errors;
 - error magnitude polynomial solutions yield the values of the errors for nonbinary codes.
- "decoding algorithm" usually means the method for obtaining these polynomials.

- Substitute roots of g(x) into $r(x) \Rightarrow 2t$ equations.
- Solve this "overspecified" system for a polynomial, roots of which are the *error locations*.
- Also solve for set of *error magnitudes*.
- Typically, these decoders decode correctly up to the design distance.

6.2 Basics of Decoding BCH and RS Codes

• Receive:

$$r(x) = c(x) + e(x) = \sum_{i=0}^{n-1} r_i \cdot x^i$$

• where

$$c(\alpha^{j}) = 0, \ j = 1, 2, \dots, 2t.$$

• Compute *syndromes:*

$$S_j = r(\alpha^j) = e(\alpha^j) = e_0 + e_1 \alpha^j + e_2 \alpha^{2j} + \dots + e_{n-1} \alpha^{(n-1)j},$$

• where $e_i \in \{0, 1\}$.

- Suppose errors occurred at locations $i_1, i_2, \ldots, i_{\ell}, \ldots, i_{\nu}, \nu \leq t$.
- For now, consider the binary case.

$$e_{i_{\ell}} = 1, \ \ell = 1, 2, \dots, \nu \leq t$$

0, otherwise.

• Then,

$$S_j = e(\alpha^j) = \alpha^{ji_1} + \alpha^{ji_2} + \dots + \alpha^{ji_{\nu}}, \ j = 1, 2, \dots, 2\nu$$

- We call $i_1, i_2, \ldots, i_{\nu}$ the error locators.
- Notation: Let $X_{\ell} = \alpha^{i_{\ell}}$. Then,

$$S_j = \sum_{\ell=1}^{\nu} X_{\ell}^j, \ j = 1, 2, \dots, 2t.$$

Expanding gives,

$$S_{1} = X_{1} + X_{2} + \dots + X_{\nu}$$

$$S_{2} = X_{1}^{2} + X_{2}^{2} + \dots + X_{\nu}^{2}$$

$$\vdots$$

$$S_{2t} = X_{1}^{2t} + X_{2}^{2t} + \dots + X_{\nu}^{2t}$$

Definition 1 These are called the **power sum symmetric functions** of the $\{X_i\}$.

Note that ν is *unknown* to the decoder.

Let

$$\Lambda(x) = (1 - X_1 x)(1 - X_2 x) \cdots (1 - X_\nu x)$$
$$= \sum_{i=0}^{\nu} \Lambda_i x^i$$

Definition 2 $\Lambda(x)$ as defined above is called the error locator polynomial.

Clearly

$$\Lambda(1/X_{\ell}) = 0, \ \ell = 1, 2, \dots, \nu$$

 and

$$\Lambda_{0} = 1$$

$$\Lambda_{\nu} = X_{1}X_{2}\cdots X_{\nu}$$

$$\Lambda_{1} = X_{1} + X_{2} + \cdots + X_{\nu}$$

$$\Lambda_{2} = \sum_{i < j} X_{i}X_{j}$$

$$\vdots$$

Definition 3 These $\{\Lambda_i\}$ are called the elementary symmetric functions of the error locators.

Newton's identities relate the elementary symmetric functions and the power sum symmetric functions:

$$S_1 + \Lambda_1 = 0$$

$$S_3 + \Lambda_1 S_2 + \Lambda_2 S_1 + \Lambda_3 = 0$$

$$S_5 + \Lambda_1 S_4 + \Lambda_2 S_3 + \Lambda_3 S_2 + \Lambda_4 S_1 + \Lambda_5 = 0$$

$$S_{2t-1} + \Lambda_1 S_{2t-2} + \Lambda_2 S_{2t-3} + \dots + \Lambda_t S_{t-1} = 0$$

Example: Suppose $\nu = 1$. Then

$$S_j = X_1^j, \ j = 1, 2.$$

from which we learn $S_1 = X_1$. The error locator polynomial becomes:

$$\Lambda(x) = (1 - X_1 x) = 1 - S_1 x.$$

Example Suppose $\nu = 2$.

• Then the odd syndromes are:

$$S_1 = X_1 + X_2$$

 $S_3 = X_1^3 + X_3^3$

• and the error locator polynomial is:

$$\Lambda(x) = (1 - X_1 x)(1 - X_2 x)$$

= 1 + (X_1 + X_2)x + X_1 X_2 x^2

- Clearly, $\Lambda_0 = 1, \ \Lambda_1 = S_1.$
- Cubing S_1 and solving simultaneously with S_3 gives

$$\Lambda_2 = \frac{S_3 + S_1^3}{S_1}$$

6.3 Peterson's Algorithm6.3.1 Binary Codes

Newton's Identities in matrix form are:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ S_2 & S_1 & 1 & 0 & \cdots & 0 \\ \vdots & & & & \\ S_{2t-2} & S_{2t-3} & S_{2t-4} & S_{2t-5} & \cdots & S_{t-1} \end{bmatrix} \cdot \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \\ \Lambda_3 \\ \vdots \\ \Lambda_t \end{bmatrix} = \begin{bmatrix} -S_1 \\ -S_3 \\ -S_5 \\ \vdots \\ \Lambda_t \end{bmatrix},$$

which we can also write as

$$\mathbf{A} \cdot \mathbf{\Lambda} = -\mathbf{S} \tag{1}$$

Properties:

- A (known) must be non-singular in order to solve for Λ .
- A is non-singular if t or t-1 errors have occurred.
- More generally,

Theorem (Berlekamp) If \mathbf{A} is $t \times t$, then the dimension of the null space of the row space of \mathbf{A} is

$$\left| \left\lfloor \frac{t - \deg \Lambda(x)}{2} \right\rfloor \right|$$

• Notice that if \mathbf{A} is of full rank, the foregoing evaluates to 0.

Peterson's algorithm:

- 1. Write down Newton's Identities (N.I.) as above.
- 2. If det[A] = 0, remove 2 rightmost columns and 2 bottom rows.
- 3. Test and repeat until $det[A] \neq 0$
- 4. Invert and solve for the $\{\Lambda_i\}$.
- 5. Find roots of $\Lambda(x)$.
 - If roots are not distinct or $\Lambda(x)$ does not have roots in the desired field, go to 9
- 6. Complement bit positions in received vector that correspond to roots of $\Lambda(x)$.
- 7. If the corrected word does not satisfy all syndromes, go to 9
- 8. Output corrected word. STOP
- 9. Declare decoder failure. STOP

Some Decoding Examples

Direct Decoding

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ S_2 & S_1 & 1 & 0 & \cdots & 0 \\ \vdots & & & & \\ S_{2t-2} & S_{2t-3} & S_{2t-4} & S_{2t-5} & \cdots & S_{t-1} \end{bmatrix} \cdot \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \\ \Lambda_3 \\ \vdots \\ \Lambda_t \end{bmatrix} = \begin{bmatrix} -S_1 \\ -S_3 \\ -S_5 \\ \vdots \\ -S_{2t-1} \end{bmatrix}, \quad (3)$$

or,

$$\mathbf{A}\cdot\mathbf{\Lambda}=-\mathbf{S}$$

For simple cases, we solve (3) directly: Single error correction (t = 1)

$$\Lambda_1 = S_1$$

Double error correction: (t = 2)

$$\begin{bmatrix} 1 & 0 \\ S_2 & S_1 \end{bmatrix} \cdot \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \end{bmatrix} = \begin{bmatrix} -S_1 \\ -S_3 \end{bmatrix},$$
$$\Lambda_1 = S_1$$
$$\Lambda_2 = \frac{S_3 + S_1^3}{S_1}$$

Triple error correction: (t = 3)

$$\begin{bmatrix} 1 & 0 & 0 \\ S_2 & S_1 & 1 \\ S_4 & S_3 & S_2 \end{bmatrix} \cdot \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \\ \Lambda_3 \end{bmatrix} = \begin{bmatrix} -S_1 \\ -S_3 \\ -S_5 \end{bmatrix},$$

$$\Lambda_1 = S_1$$

$$\Lambda_2 = \frac{S_1^2 S_3 + S_5}{S_1^3 + S_3}$$

$$\Lambda_3 = (S_1^3 + S_3) + S_1 \Lambda_2$$

Quadruple error correction: (t = 4)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ S_2 & S_1 & 1 & 0 \\ S_4 & S_3 & S_2 & S_1 \\ S_6 & S_5 & S_4 & S_3 \end{bmatrix} \cdot \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \\ \Lambda_3 \\ \Lambda_4 \end{bmatrix} = \begin{bmatrix} -S_1 \\ -S_3 \\ -S_5 \\ -S_7 \end{bmatrix},$$

$$\Lambda_1 = S_1$$

$$\Lambda_2 = \frac{S_1(S_7 + S_1^7) + S_3(S_1^5 + S_5)}{S_3(S_1^3 + S_3) + S_1(S_1^5 + S_5)}$$

$$\Lambda_3 = (S_1^3 + S_3) + S_1 \Lambda_2$$

$$\lambda_4 = \frac{(S_5 + S_1^2 S_3) + (S_1^3 + S_3)\Lambda_2}{S_1}$$

Quintuple error correction:
$$(t = 5)$$

$$\begin{split} \Lambda_{1} &= S_{1} \\ \Lambda_{2} &= \frac{(S_{1}^{3} + S_{3})[(S_{1}^{9} + S_{9}) + S_{1}^{4}(S_{5} + S_{1}^{2}S_{3}) + S_{3}^{2}(S_{1}^{3} + S_{3})]}{(S_{1}^{3} + S_{3})[(S_{7} + S_{1}^{7}) + S_{1}S_{3}(S_{1}^{3} + S_{3})] + (S_{5} + S_{1}^{2}S_{3})(S_{1}^{5} + S_{5})]} \\ &+ \frac{[(S_{1}^{5} + S_{5})(S_{7} + S_{1}^{7}) + S_{1}(S_{3}^{2} + S_{1}S_{5})]}{(S_{1}^{3} + S_{3})[(S_{7} + S_{1}^{7}) + S_{1}S_{3}(S_{1}^{3} + S_{3})] + (S_{5} + S_{1}^{2}S_{3})(S_{1}^{5} + S_{5})]} \\ \Lambda_{3} &= (S_{1}^{3} + S_{3}) + S_{1}\Lambda_{2} \\ \Lambda_{4} &= \frac{(S_{1}^{9} + S_{9}) + S_{3}^{2}(S_{1}^{3} + S_{3}) + S_{1}^{4}(S_{5} + S_{1}^{2}S_{3})}{(S_{1}^{5} + S_{5})} \\ &+ \frac{[(S_{7} + S_{1}^{7}) + S_{1}S_{3}(S_{1}^{3} + S^{3})]\Lambda_{2}}{(S_{1}^{5} + S_{5})} \\ \Lambda_{5} &= (S_{5} + S_{1}^{2}S_{3}) + S_{1}\Lambda_{4} + (S_{1}^{3} + S_{3})\Lambda_{2} \end{split}$$

Suggested study problem

- Design a BCH code with n = 7 and t = 4.
- $\bullet\,$ Select some code word c from your code.
- For t = 0 to t = 2 do
 - Select an error vector e of weight t.
 - Form the received vector $\mathbf{r}=\mathbf{c}+\mathbf{e}$
 - Decode ${\bf r}$ using the direct method above.

Double Error Correction using Peterson's Algorithm For n = 31 let

$$g(x) = 1 + x^3 + x^5 + x^6 + x^8 + x^9 + x^{10}$$

the roots of which include $\{\alpha, \alpha^2, \alpha^3, \alpha^4\}$.

Let the received vector ${\bf r}$ be

or

$$r(x) = x^{2} + x^{7} + x^{8} + x^{11} + x^{12}$$

You should verify that

$$S_1 = r(\alpha) = \alpha^7$$

$$S_2 = r(\alpha^2) = \alpha^{14}$$

$$S_3 = r(\alpha^3) = \alpha^8$$

$$S_4 = r(\alpha^4) = \alpha^{28}$$

Since t = 2, we use the foregoing to get

$$\Lambda_1 = S_1 = \alpha^7$$

$$\Lambda_2 = \frac{S_3 + S_1^3}{S_1} = \alpha^{15}$$

Then, the error locator polynomial is

$$\Lambda(x) = 1 + \alpha^{7}x + \alpha^{15}x^{2} = (1 + \alpha^{5}x)(1 + \alpha^{10}x)$$

which indicates that the errors are at the 5^{th} and 10^{th} places of r, and that the transmitted codeword most likely was

and

$$c(x) = x^{2} + x^{5} + x^{7} + x^{8} + x^{10} + x^{11} + x^{12}$$
$$= x^{2}g(x)$$

Another example

 $g(x) = 1 + x + x^{2} + x^{3} + x^{5} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{15}$

where, again n = 31 but now, t = 3.

Suppose

$$r(x) = x^{10}$$

What was the most likely transmitted word?

The all-zero word!..

Why?

The Chien Search: Solving the error locator polynomial

- 1. Repeatedly multiply each Λ_i by α^i .
- 2. Sum each set of products to get $A_i = \Lambda(\alpha^i) 1 = \sum_{j=1}^t \Lambda_j \alpha^{ij}$.
- 3. If $\Lambda(\alpha^j) = 0$ then
 - $A_i = 1$ and an error occurred at the coordinate associated with $\alpha^{-j} = \alpha^{n-1}$.
 - So, add 1 to received bit r_{n-j} .
- 4. Otherwise do nothing.

Verification:

- Use similar circuit with Λ_i replaced by c_i (decoder output) and include $c_0 = 1$.
- This tests for whether the powers of α are roots of c(x).

6.3.2 Peterson-Gorenstein-Zierler Algorithm for Non-binary Codes

• As before, write syndromes:

 $S_j = e_0 + e_1 \alpha^j + e_2 \alpha^{2j} + \dots + e_{n-1} \alpha^{(n-1)j}, \ j = 1, \dots, 2t.$

• Expand in matrix form:

$$S_{1} = e_{i_{1}}X_{1} + e_{i_{2}}X_{2} + \dots + e_{i_{\nu}}X_{\nu}$$

$$S_{2} = e_{i_{1}}X_{1}^{2} + e_{i_{2}}X_{2}^{2} + \dots + e_{i_{\nu}}X_{\nu}^{2}$$

$$S_{3} = e_{i_{1}}X_{1}^{3} + e_{i_{2}}X_{2}^{3} + \dots + e_{i_{\nu}}X_{\nu}^{3}$$
(4)

$$S_{2t} = e_{i_1} X_1^{2t} + e_{i_2} X_2^{2t} + \dots + e_{i_\nu} X_{\nu}^{2t}$$

- Decoder must compute:
 - Error locators

$$\{X_\ell, \ \ell=1,2,\ldots,\nu\}$$

- Error magnitudes

$$\{e_{i_{\ell}}, \ \ell = 1, 2, \dots, \nu\}$$

- (Recall that the $\{e_{i_{\ell}}\}$ are known in the binary case.)
- **But:** The syndromes are no longer *power-sum symmetric functions.*
- Use different method to get sets of linear functions in the unknown locators and magnitudes.

Recall:

$$\Lambda(x) = \prod_{\ell=1}^{\nu} (1 - X_{\ell} x).$$

Therefore, for some error locator X_{ℓ} :

$$\Lambda(X_{\ell}^{-1}) = \Lambda_{\nu} X_{\ell}^{-\nu} + \Lambda_{\nu-1} X_{\ell}^{-(\nu-1)} + \dots + \Lambda_{0} = 0$$

Then form

$$\sum_{\ell=1}^{\nu} e_{i_{\ell}} X_{\ell}^{j} \Lambda(X_{\ell}^{-1}),$$

and substitute

$$S_j = e_{i_1} X_1^j + e_{i_2} X_2^j + \dots + e_{i_\nu} X_{\nu}^j.$$

This gives

$$\Lambda_{\nu}S_{j-\nu} + \Lambda_{\nu-1}S_{j-\nu+1} + \dots + \Lambda_1 S_{j-1} = -S_j.$$

Also, recall $\Lambda_0 = 1$.

Let $\nu = t$ and expand in matrix form:

$$\mathbf{A}'\Lambda = \begin{bmatrix} S_1 & S_2 & \cdots & S_t \\ S_2 & S_3 & \cdots & S_{t+1} \\ \vdots & & & \\ S_{t-1} & S_t & \cdots & S_{2t-2} \\ S_t & s_{t+1} & \cdots & S_{2t-1} \end{bmatrix} \begin{bmatrix} \Lambda_t \\ \Lambda_{t-1} \\ \vdots \\ \Lambda_2 \\ \Lambda_1 \end{bmatrix} \begin{bmatrix} -S_{t+1} \\ -S_{t+2} \\ \vdots \\ -S_{2t-1} \\ -S_{2t} \end{bmatrix}$$

One can show:

- \mathbf{A}' is nonsingular if exactly t errors occurred.
- \mathbf{A}' is singular if $\nu < t$ errors occurred.
- As before, removal of appropriate numbers of rows and columns gives nonsingular matrix and reveals actual number of errors.

Outline of PGZ Algorithm

1. From the $\{S_j\}$, compute \mathbf{A}' .

(a) If $|\mathbf{A}'| = 0$, delete rightmost column and entire bottom row.

(b) Repeat until nonsingular.

- 2. Solve for Λ ; construct $\Lambda(x)$.
- 3. If roots of $\Lambda(x)$ are not in the desired field or are not distinct, declare decoding failure. STOP
- 4. Substitute $\{X_{\ell}\}$ into the $\{S_j\}$. Reduce to matrix form:

$$\mathbf{B}e = \begin{bmatrix} X_1 & X_2 & \cdots & X_{\nu} \\ X_1^2 & X_2^2 & \cdots & X_{\nu}^2 \\ \vdots & & & \\ X_1^{\nu} & X_2^{\nu} & \cdots & X_{\nu}^{\nu} \end{bmatrix} \begin{bmatrix} e_{i_1} \\ e_{i_2} \\ \vdots \\ e_{i_{\nu}} \end{bmatrix} = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_{\nu} \end{bmatrix}$$

5. Solve for $\{e_{i_{\ell}}\}$ Output corrected word. STOP

6.4 Berlekamp's Algorithm for Binary (BCH) Codes

- Peterson's alg: # of GF multiplications $\sim~
 u^2$
- Cumbersome for $\nu > \sim ~ 6$
- Complexity of *Berlekamp algorithm* \sim linear with ν .
- Introduce Berlekamp's for binary codes
- Study Massey's formulation of Berlekamp's for non-binary codes.

6.4.1 Introduction and General Approach

Decoding steps common to most BCH/RS algorithms:

- 1. Calculate syndromes: S_1, S_2, \ldots, S_{2t}
- 2. Calculate $\Lambda_1, \Lambda_2, \ldots, \Lambda_t$ from the $\{S_j\}$.
- 3. Calculate error locations $\{X_\ell\}$ from the $\{\Lambda_i\}$
- 4. Calculate error values $\{Y_{\ell}\}$ from the $\{X_{\ell}\}$, $\{S_{j}\}$. (Non-binary case)

6.4.2 Berlekamp's iterative method for binary codes (offered without proof). Define a **syndrome polynomial** to be

$$S(x) = S_1 x + S_2 x^2 + \dots + S_{2t+1} x^{2t+1} + \dots$$

of arbitrarily large degree. Now let

$$\Omega(x) \triangleq [1 + S(x)]\Lambda(x)$$

= $(1 + S_1x + S_2x^2 + \dots + S_{2t+1}x^{2t+1} + \dots)$
 $\cdot (1 + \Lambda_1x + \Lambda_2x^2 + \dots)$
= $1 + (S_1 + \Lambda_1)x + (S_2 + S_1\Lambda_1 + \Lambda_2)x^2$
 $+ (S_3 + S_2\Lambda_1 + S_1\Lambda_2 + \Lambda_3)x^3 + \dots$
= $1 + \Omega_1x + \Omega_2x^2 + \Omega_3x^3 + \dots$

Notes:

1. Comparison of the coefficients with Newton's identities shows that the coefficients of the **odd** powers of x are identically zero.

2. Although the polynomials have arbitrary degree, only the first 2t of the $\{S_i\}$ are known.

Therefore, we write

$$\Omega(x) = [1 + S(x)]\Lambda(x) \mod x^{2t+1} \\ = 1 + \Omega_2 x^2 + \Omega_4 x^4 + \dots \mod x^{2t+1}$$

Berlekamp's iterative algorithm solves for $\Lambda(x)$ iteratively, by breaking the problem down into a set of steps,

$$[1 + S(x)]\Lambda^{(2k)}(x) = 1 + \Omega_2 x^2 + \Omega_4 x^4 + \dots \mod x^{2t+1}$$

for k from 1 to t.

- 1. Initialize k = 0, $\Lambda^{(0)}(x) = 1$, $T^{(0)} = 1$.
- 2. Let $\Delta^{(2k)}$ be the coefficient of x^{2k+1} in $\Lambda^{(2k)}[1+S(x)]$.
- 3. Compute

$$\Lambda^{2k+2}(x) = \Lambda^{(2k)}(x) + \Delta^{(2k)}[x \cdot T^{(2k)}(x)]$$

4.(a) if
$$\Delta^{(2k)} = 0 \text{ or } \deg[\Lambda^{(2k)}(x)] > k$$

$$T^{(2k+2)}(x) = x^2 T^{(2k)}(x)$$

(b) else if $\Delta^{(2k)} \neq 0$ and $\deg[\Lambda^{(2k)}(x)] \leq k$

$$T^{(2k+2)}(x) = \frac{T^{(2k)}(x)}{\Delta^{(2k)}}$$

(c) Set k = k + 1. If k < t go to step 2.
(d) Apply Chien search, test the roots, output status, STOP.

6.4.3 Examples:

1. (15,5), 3-error correcting binary BCH code (6.6, p 215, L&C)

• Receive $r(x) = x^3 + x^5 + x^{12}$. Then

$$S_1 = S_2 = S_4 = 1$$
 $S_3 = \alpha^{10}$
 $S_5 = \alpha^{10}$ $S_6 = \alpha_5$

- Initialize k = 0, $\Lambda^{(0)} = 1$, $T^{(0)}(x) = 1$.
- $\Delta^{(0)}$ is the coefficient of x in

$$\Lambda^{(0)}(x)[1+S_1x+\cdots]$$

So, $\Delta^{(0)} = S_1 = 1$ $\frac{k \Lambda^{(2k)} \Delta^{(2k)} T^{(2k)}}{0 \quad 1 \quad S_1 = 1 \quad 1}$

$$\Lambda^{(2)}(x) = \Lambda^{(0)}(x) + \Delta^{(0)}[x \cdot T^{(0)}(x)]$$

= 1 + S₁ · x · 1
= 1 + S₁x

• k = k + 1 = 1. $\Delta^{(2)} = \text{coefficient of } x^3 \text{ in}$ $\Lambda^{(2)}(x)[1 + S_1x + S_2x^2 + S_3x^3 + \cdots].$ Or $\Delta^{(2)} = S_1S_2 + S_3 = S_1^3 + S_3 = \alpha^5$. And $T^{(2)}(x) = \frac{x \cdot 1}{S_1} = x$

So, now we have...

$$\Lambda^{(4)}(x) = \Lambda^{(2)}(x) + \Delta^{(2)}[x \cdot T^{(2)}(x)]$$
$$= 1 + x + \alpha^5 \cdot x \cdot x$$
$$= 1 + x + \alpha^5 x^2$$

• k = k + 1 = 2 and $\Delta^{(4)} =$ the coefficient of x^5 in

$$\Lambda^{(4)}(x)[1 + S_1 x + S_2 x^2 + S_3 x^3 + S_4 x^4 + S_5 x^5 + \cdots]$$

Or $\Delta^{(4)} = S_5 + S_4 + \alpha^5 \cdot S_3 = \alpha^{10}$.
$$T^{(4)}(x) = \frac{x \cdot \Lambda^{(2)}(x)}{\Delta^{(2)}}$$
$$= \alpha^{10} x + \alpha^{10} x^2$$

	k	$\Lambda^{(2k)}$	$\Delta^{(2k)}$	$T^{(2k)}$
	0	1	$S_1 = 1$	1
	1	1+x	$lpha^5$	x
	2	$1 + x + \alpha^5 x^2$	$lpha^{10}$	$\alpha^{10}x + \alpha^{10}x^2$
k = k + k	1 =	3		

•
$$k = k + 1 = 3$$

$$\Lambda^{(6)}(x) = \Lambda^{(4)}(x) + \Delta^{(4)}(x)[x \cdot T^{(4)}(x)]$$

= 1 + x + \alpha^5 x^2 + \alpha^{10} \cdot x(\alpha^{10} x + \alpha^{10} x^2)
= 1 + \alpha + \alpha^5 x^3

k	$\Lambda^{(2k)}$	$\Delta^{(2k)}$	$T^{(2k)}$
0	1	$S_1 = 1$	1
1	1+x	$lpha^5$	x
2	$1 + x + \alpha^5 x^2$	$lpha^{10}$	$\alpha^{10}x + \alpha^{10}x^2$
3	$1 + \alpha + \alpha^5 x^3$		

- 2. (31, 16), 3-error correcting binary BCH code.
- The 3-error correcting (31, 16) binary BCH code;
- Consecutive roots are $\alpha, \alpha^2, \ldots, \alpha^6$ where α is primitive in GF(32).

$$r(x) = 1 + x^9 + x^{11} + x^{14}$$

Using $m_{\alpha}(x) = 1 + x^2 + x^5$ we get

$$S_{1} = r(\alpha) = 1 + \alpha^{9} + \alpha^{11} + \alpha^{14} = 1$$

$$S_{2} = r(\alpha^{2}) = 1$$

$$S_{3} = r(\alpha^{3}) = 1 + \alpha^{3}$$

$$S_{4} = 1$$

$$S_{5} = \alpha^{2} + \alpha^{3}$$

$$S_{6} = 1 + \alpha + \alpha^{3}$$

and

$$S(x) = x + x^{2} + (1 + \alpha^{3})x^{3} + x^{4} + (\alpha^{2} + \alpha^{3})x^{5} + (1 + \alpha + \alpha^{3})x^{6}$$

= $x + x^{2} + \alpha^{29}x^{3} + x^{4} + \alpha^{23}x^{5} + \alpha^{27}x^{6}$

Exercise (optional): Using Berlekamp's iterative method, try to derive the error locator polynomial,

$$\Lambda(x) = 1 + x + \alpha^{16} x^2 + \alpha^{17} x^3.$$

If more than *t* errors occur...

- 1. Alg. can terminate with $\Lambda(x)$ of correct degree and roots (RARE).
- 2. $\Lambda(x)$ can decode to (incorrect but) closest code word.
- 3. $\Lambda(x)$ will have degree $\nu \leq t$ but fewer than ν distinct roots, making it an *illegitimate* error locator polynomial.

6.4.4 The Berlekamp-Massey Algorithm for nonbinary codes

- For binary codes, we used Berlekamp's formulation of his decoder.
- For non-binary codes, we will examine *Massey's explanation of Berlekamp's iterative algorithm*.
- Begin with the recursion derived for the PGZ Algorithm:

$$\Lambda_{\nu}S_{j-\nu} + \Lambda_{\nu-1}S_{j-\nu+1} + \dots + \Lambda_1S_{j-1} = -S_j$$

• This describes the operation of a linear feedback shift register (LFSR).

©2003, A. Brinton Cooper III

Figure 1: LFSR to genetrate sequence of syndromes.

• Massey showed that determining coefficients of E.L.P. from syndromes (Berlekamp) is equivalent to synthesizing the minimum length FSR that generates the syndrome sequence.

- BMA algorithm is used throughout Computer Science to design a minimum length FSR to generate any given sequence.
- This minimum length is often known as the *complexity* of the sequence.

Preliminaries

1. Terminology:

- $\Lambda(x)$ called the *connection polynomial* of the LFSR.
- T(x) is the correction polynomial.
- $\Delta^{(2k)}$ is the *discrepancy*.
- L is the length of the LFSR.
- The process is indexed by k.

- 2. Objective: Find the $\Lambda(x)$ for a LFSR that generates S_{t+1}, S_{t+2}, \ldots when initialized with S_1, S_2, \ldots, S_t .
- 3. Outline of Algorithm:
 - (a) Postulate the shortest possible LFSR.
 - (b) Try to generate the entire syndrome sequence.
 - (c) Compare LFSR output with correct syndromes.
 - (d) When discrepancy is observed
 - i. modify LFSR according to prescribed rule;
 - ii. re-start LFSR
 - (e) Continue to the next discrepancy or to the end.

Details of BMA

- 1. Compute syndromes S_1, \cdots, S_{2t} .
- 2. Initialize:

$$k = 0$$

$$\Lambda^{(0)}(x) = 1$$

$$L = 0$$

$$T(x) = x$$

3. k = k = 1; Compute discrepancy.

$$\Delta^{(k)} = S_k - \sum_{i=1}^{L} \Lambda_i^{(k-1)} S_{k-1}.$$

4. If $\Delta^{(k)} = 0$, GOTO 8. ELSE: continue.

5. Modify connection polynomial.

$$\Lambda^{(k)}(x) = \Lambda^{(k-1)}(x) - \Delta^{(k)}T(x)$$

6. If $2L \ge k$, GOTO 8. ELSE: continue.

7. Change register length; update correction term.

$$L = k - L$$

$$T(x) = \Lambda^{(k-1)}(x) / \Delta^{(k)}$$

$$T(x) = x \cdot T(x)$$

8. If k < 2t GOTO 3. ELSE: continue.

9. Solve $\Lambda(x)$.

(a) If roots are distinct and in correct field

- find error magnitudes;
- correct corresponding locations in r(x);
- END
- (b) Otherwise
 - Declare decoding FAILURE.
 - STOP