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6.0 Decoding BCH and RS Codes

6.1 Conventional Decoding
e based on roots of codewords:
e syndrome polynomials are computed;

solutions lead to

— error locator polynomial - roots are the locations of the errors;

— error magnitude polynomial - solutions yield the values of the

errors for nonbinary codes.

“decoding algorithm” usually means the method for obtaining

these polynomials.
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Substitute roots of g(x) into r(x) = 2t equations.

Solve this “overspecified” system for a polynomial, roots of which
are the error locations.

Also solve for set of error magnitudes.

Typically, these decoders decode correctly up to the design
distance.
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6.2 Basics of Decoding BCH and RS Codes

e Recelve:

r(z) =

c(ozj) =0, j=

Compute syndromes:

S;=r(al) =e(a?) = ey + e10’ + e20™ + -+ + €10,

where e; € {0,1}.
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Suppose errors occurred at locations i1,79,...,%,...,%,, Vv <.

For now, consider the binary case.

e, = 1, 0=12. . v<t

12

0, otherwise.

Then,

Si=eld)=a" +a/? +-.- -+, j=1,2,...,2v
We call 1,19, ...,1, the error locators.

Notation: Let X, = o**. Then,

S;=> X}, j=12,..2.
=1




(©2003, A. Brinton Cooper III

Expanding gives,

X1+ Xo+ -+ Xy
X7+ X5+ + X

Definition 1 These are called the power sum symmetric functions
of the {Xz}

[]
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Note that v i1s unknown to the decoder.

(1—-X12)(1 — Xox)--- (1 — X, o)

v
E AZ'.Q?Z
1=0

Definition 2 A(x) as defined above is called the error locator

polynomial.
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Clearly

and

> XiX;

1<J

Definition 3 These {A;} are called the elementary symmetric
functions of the error locators.
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Newton’s identities relate the elementary symmetric functions and
the power sum symmetric functions:

S1+ M
S3 4+ A1So + AsS1 + As
Sy + A1 Sy + AoS3 + A3Ss + AyST + A

Sot—1 + AN1So—2 + AaSor—3+ -+ A Sia

Example: Suppose v = 1. Then

S;=XI, j=1,2.

from which we learn S; = X;. The error locator polynomial becomes:

Alz)=(1—-Xy2)=1— S1z.
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Example Suppose v = 2.

e Then the odd syndromes are:

S1 = X1+ Xy
Sg = X13—|—X§

e and the error locator polynomial is:

Alz) = (1—-—X12)(1 — Xox)
= 14+ (X1 + Xo)z + X1 Xp2?

e Clearly, A g =1, Ay = 5.

e Cubing S1 and solving simultaneously with S3 gives

Sz + 57

A
2 S
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6.3 Peterson’s Algorithm
6.3.1 Binary Codes
Newton's ldentities in matrix form

| Sot—2  Sot—3  Sat—a  S2—s

which we can also write as

are:

10
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Properties:
e A (known) must be non-singular in order to solve for A.
e A is non-singular if ¢t or t — 1 errors have occurred.

e More generally,

Theorem (Berlekamp) If A ist x t, then the dimension of the
null space of the row space of A is

Ht— deg A(:c)J|

2

e Notice that if A is of full rank, the foregoing evaluates to 0.

11
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Peterson’s algorithm:

1.

Write down Newton's Identities (N.l.) as above.

. If det|A] = 0, remove 2 rightmost columns and 2 bottom rows.
. Test and repeat until det[A] # 0

. Invert and solve for the {A;}.

. Find roots of A(x).

e If roots are not distinct or A(z) does not have roots in the
desired field, go to 9

. Complement bit positions in received vector that correspond to
roots of A(x).

. If the corrected word does not satisfy all syndromes, go to 9
. Output corrected word. STOP
. Declare decoder failure. STOP

12
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Some Decoding Examples

Direct Decoding

_SZt—Q S2t—3 SQt—4 SZt—5 e St—l

or,
A-A=-S

For simple cases, we solve (3) directly:

Single error correction (t = 1)

A =5

13
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Double error correction: (t

14
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15
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Quadruple error correction: (¢

1 0 0 0
S S 1 0
Si S35 S» S
Se S5 Si S

Aq S1

S1(S7 4 S7) + S3(S7 + S5)

A
’ S5(S3 + S3) + 51(S? + S5)

(S} + S3) 4+ S1As

(S5 + S253) + (57 + S3)As

S1

16
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S1

(S7 + S3)[(S] + So) + S1(Ss + S7S5) + S3(S7 + S3)]
(S3 + S3)[(S7 + ST) + S153(S7 + S3)] + (S5 + S%53)(S? + SH]

(ST 4+ S5)(S7 + S7) + S1(S5 + S1.55)]
(87 4 S3)[(S7+ ST) + S155(S5 + S3)] + (S5 + S753)(S? + S

(Sf + 53) + S1A-

(S 4 So) + S5(ST + S3) + ST(S5 + S7.53)
(S? + S5)
[(S7+ ST) + S155(S7 + S?)]As
(87 + S5)

(S5 + 5753) + S1A4 + (S + S3)As
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Suggested study problem
e Design a BCH code with n =7 and t = 4.
e Select some code word ¢ from your code.

e Fort=0tot=2do

— Select an error vector e of weight ¢.

— Form the received vectorr = c + e

— Decode r using the direct method above.

18
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Double Error Correction using Peterson’s Algorithm
For n = 31 let
gx) =142 +2° 4+ 2° + 2% + 2 + 2
the roots of which include {o, o?, a3, a?}.

Let the received vector r be

r = (0010000110011000000000000000000)

r(x) = 22+ g gt gt

You should verify that

19
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Since t = 2, we use the foregoing to get

Ay = Si=a
S3+S%:a15
S1

Then, the error locator polynomial is

e

Alz) = 1+a’z+a2?
= (1+a°2)(1+ a'2)

which indicates that the errors are at the 5" and 10" places of r, and
that the transmitted codeword most likely was

¢ = 001001011011100000000000000000)

c(x) = 2?42+ a” +ad a0 g gl g g2

z°g(x)

20
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Another example

gx)=1+z+2°+2° +2° + 2" + 28+ 27 + 210 + 21t 4 2P

where, again n = 31 but now, t = 3.

Suppose

r(r) ==

What was the most likely transmitted word?

21
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The all-zero word!..

Why?

22
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The Chien Search: Solving the error locator polynomial
1. Repeatedly multiply each A; by o’.

2. Sum each set of products to get 4; = A(a!) — 1= Z;zl Aja¥.

3. If A(a?) =0 then

e A, =1 and an error occurred at the coordinate associated with

e S0, add 1 to received bit 7,,_;.
4. Otherwise do nothing.
Verification:

e Use similar circuit with A; replaced by ¢; (decoder output) and
include ¢y = 1.

e This tests for whether the powers of a are roots of c¢(x).
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@— Output buffer—l

1 if error,

else 0 Verify - FAIL
!

CO’Cl""’Cn-l

24
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6.3.2 Peterson-Gorenstein-Zierler Algorithm for Non-binary
Codes

e As before, write syndromes:

. 0
S;=eo+ e +ea™ 4 -

e Expand in matrix form:

€i, X1+ e Xo+ - +¢€,X,
ein X7 + e, X5 -+ e, X7
ein X7 + e X5 4+ e, X

2t 2t 2t
i, X1 +eip Xy + - te, X

25
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Decoder must compute:
— Error locators

{Xg, 521,2,...,V}

— Error magnitudes
{eie, (= 1,2,...,1/}

(Recall that the {e;,} are known in the binary case.)

But: The syndromes are no longer power-sum symmetric

functions.

Use different method to get sets of linear functions in the

unknown locators and magnitudes.

26
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Recall:
1%

Az) =] - Xem).

=1
Therefore, for some error locator Xy:

AXD =AX, Y+ A1 X, Y 4 Ay =0

Then form

14

Z eieXgA(Xe—l)a

/=1
and substitute

Si=ei X] +e, X+ +e X
This gives
AI/Sj—I/ + AI/—]_Sj—I/—I—l + o+ Al-Sj—l — _Sj-

Also, recall Ag = 1.

27
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Let v =t and expand in matrix form:

S2t—1 |

One can show:
e A’ is nonsingular if exactly t errors occurred.
e A’ issingular if v <t errors occurred.

e As before, removal of appropriate numbers of rows and columns
gives nonsingular matrix and reveals actual number of errors.

28
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Outline of PGZ Algorithm
1. From the {S,}, compute A’.

(a) If |A’| =0, delete rightmost column and entire bottom row.

(b) Repeat until nonsingular.
. Solve for A; construct A(x).

. If roots of A(x) are not in the desired field or are not distinct,
declare decoding failure. STOP

. Substitute {X,} into the {S,}. Reduce to matrix form:

X X - X, . S,
Xz X3 ... X?Z

Xy

. Solve for {e;,} Output corrected word. STOP
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6.4 Berlekamp’s Algorithm for Binary (BCH) Codes

Peterson's alg: # of GF multiplications ~ 1/?

Cumbersome for v >~ 6
Complexity of Berlekamp algorithm ~ linear with v.

Introduce Berlekamp's for binary codes

Study Massey's formulation of Berlekamp's for non-binary codes.

30
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6.4.1 Introduction and General Approach

Decoding steps common to most BCH /RS algorithms:

1. Calculate syndromes: S1,S55,..., S

. Calculate Ay, Ay, ..., A from the {S,}.

. Calculate error locations { X} from the {A;}

. Calculate error values {Y;} from the {X,}, {S;}. (Non-binary
case)

31
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6.4.2 Berlekamp'’s iterative method for binary codes (offered
without proof). Define a syndrome polynomial to be

S(ZE) = 5133 -+ Sng + -+ Sgt+1x2t+1 + .-

of arbitrarily large degree. Now let
Q) = [1+S(x)]A(x)
= (145812 + Sox? 4+ Spppra® )
(1 + Az 4 Aga® +--)
1+ (S1+ Az + (So + S1A; + Ay)z?
(S3+ SoA1 + S1As 4+ Ag)z’® + - -
1+ Quz + Qox? + Qad + - -

Notes:

1. Comparison of the coefficients with Newton's identities shows that
the coefficients of the odd powers of x are identically zero.
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2. Although the polynomials have arbitrary degree, only the first 2t
of the {S;} are known.

Therefore, we write
Q(z) = [14 S(x)]A(x) mod z***
= 1+ Q2%+ Qa”+---  mod z*!

Berlekamp’s iterative algorithm solves for A(x) iteratively, by
breaking the problem down into a set of steps,

[1 + S(x)]A(%) (5’7) =1+ Q2ZI32 + Q4$4 + - mod z2tt!

for k from 1 to t.




(©2003, A. Brinton Cooper III 34

1. Initialize k =0, AQ(z) =1, 7O =1,
2. Let A% be the coefficient of 22**+1 in ACRI[1 4+ S(z)].

3. Compute

A2 () = APR) (z) + ABP [z TR ()]

4.(a) if AR =0 or deg[APK) ()] >k
T(2k—|—2)( ) _ $2T(2k)(£€)
(b) else if AP £ 0 and deg[APR)(z)] <k

T(2k) (:C)
A (2k)

T(2k—|—2)( )_

(c) Set k=k+ 1. If Kk <t go to step 2.
(d) Apply Chien search, test the roots, output status, STOP.
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6.4.3 Examples:
1. (15,5), 3-error correcting binary BCH code (6.6, p 215, L&C)
e Receive r(z) = 2° + 2° + 2'2. Then
S1=58,=5,=1 Ss = Y
Sy = Y Se = o5
o Initialize k =0, A® =1, TO(z) =1.

o A is the coefficient of z in

AO()1 4+ Sz +---]

SO, A(O) = Sl =1
L A(2k) A(2k) T(Zk)
0 1 S1 =1 1

35
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AP (@) = AD@) 4+ AQ . 7O (g)]
1+5-x-1
= 1+ S1£IZ

o k=k+1=1. A® = coefficient of z3 in

AP (2)[1 + S12 + Spa? + Sz +---].

Or A(Q) = 3152 + 53 = S:f + Sg = &5. And

x-1

8@ =5
1

=
So, now we have...
AR AR p(2R)
0 1 S;i=1 1
1 1+« a’ T
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AN (@) = AP (2)+ APz TP (1))
= l+x+a° -2 2

= 14z+a°2?

o k=k+1=2and A® = the coefficient of z° in

AD ()1 + S1x + Saa® + Sza® + Syx* 4 Ssa® + -+ -]

Or AW = S5—|—S4+Oé5 -+ S3 = a'?,

T 4) (z)

37
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AN (z) + AW (@) [z - TW ()]

1+x+az? + o 2(a'z + a'2?

1+ a4+ a’x’

)

38
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39
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2. (31,16), 3-error correcting binary BCH code.

e The 3-error correcting (31,16) binary BCH code;

2

e Consecutive roots are «, o, ..., a® where « is primitive in

GF(32).
r(z) =142 + 2 + 214

Using mq(z) = 1+ 22 + 2° we get

rla) =1+a’ +att +a'* =1
r(a?) =1

r(a®) =1+ a°
1

042—|—053

40
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= z4+2°+ 1+ +2* + (0 + )2’ + (1 + a+a?)
2?0293 Lt 1 025 1 02746
Exercise (optional): Using Berlekamp's iterative method, try to
derive the error locator polynomial,

Az) =142+ 2% + a'"25.

41
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If more than ¢ errors occur...

. Alg. can terminate with A(x) of correct degree and roots (RARE).

. A(x) can decode to (incorrect but) closest code word.

. A(x) will have degree v <t but fewer than v distinct roots,
making it an illegitimate error locator polynomial.

42
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6.4.4 The Berlekamp-Massey Algorithm for nonbinary codes

For binary codes, we used Berlekamp’s formulation of his decoder.

For non-binary codes, we will examine Massey’s explanation of
Berlekamp's iterative algorithm.

Begin with the recursion derived for the PGZ Algorithm:

A,/Sj_,/ -+ A,,_lSj_,,H + -4 AlSj_l = -5

This describes the operation of a linear feedback shift register
(LFSR).
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BB - —)
Q« -\ (g« N2 é«— ~N-1 l -~ /vt

—Sj- Sj-t

Sjtl’SjtZ’

Figure 1: LFSR to genetrate sequence of syndromes.

e Massey showed that determining coefficients of E.L.P. from
syndromes (Berlekamp) is equivalent to synthesizing the minimum
length FSR that generates the syndrome sequence.
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e BMA algorithm is used throughout Computer Science to design a
minimum length FSR to generate any given sequence.

e This minimum length is often known as the complexity of the

Sequence.

45
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Preliminaries

1. Terminology:

e A(x) called the connection polynomial of the LFSR.

T'(x) is the correction polynomial.

ACE) is the discrepancy.

L is the length of the LFSR.

The process is indexed by k.

46
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2. Objective: Find the A(x) for a LFSR that generates
Sti1,St42,... when initialized with 51,55, ..., 5.

3. Outline of Algorithm:
a) Postulate the shortest possible LFSR.

c) Compare LFSR output with correct syndromes.

(
(b) Try to generate the entire syndrome sequence.
(
(

d) When discrepancy is observed
i. modify LFSR according to prescribed rule;
ii. re-start LFSR

(e) Continue to the next discrepancy or to the end.

47
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Details of BMA

. Compute syndromes Sq, - -, So.

. Initialize:

. k =k =1; Compute discrepancy.

L
AR =8 — N APV

1=1

. If A% =0, GOTO 8. ELSE: continue.

48
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. Modify connection polynomial.

AR () = ARV (z) — AR ()

. If 2L >k, GOTO 8. ELSE: continue.
. Change register length; update correction term.
= k—L
Ak=1) (a:)/A(’“)
x-T(x)
It k<2t GOTO 3. ELSE: continue.
. Solve A(x).

49
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(a) If roots are distinct and in correct field

e find error magnitudes;
e correct corresponding locations in r(x);
e END

(b) Otherwise
e Declare decoding FAILURE.
e STOP

50



