5.0 BCH and Reed-Solomon Codes

5.1 Introduction

A. Hocquenghem (1959), “Codes correcteur d’erreurs;”

Bose and Ray-Chaudhuri (1960), “Error Correcting Binary
Group Codes;”

First general family of algebraic codes defined by structure.
Peterson: proved BCH codes cyclic; first general coding text;
Gorenstein & Zierler extended to fields of size p™.

Decoders developed by Peterson, Zierler, Berlekamp, Massey,
Retter, Cooper, others.




5.1.1 Attributes
cyclic code
wide selection of n, k, d,in
binary (will relax later) symbols
efficient encoding and decoding algorithms
algorithmic definition

5.1.2 Definition
m, 1 integers;
p prime;

q=p";

Let a be an element of order n in GF'(¢™).

Basic definition of binary BCH codes:




Definition 1 For m > 3 and t < 2™~ 1 there exists a binary BCH

code with
e block length n =2 — 1
o n—k<mt

The generator polynomial g(x) of this code is the lowest-degree

polynomial over GF(2) which has a, a?,--- ,a?' among its roots.




A more formal and complete definition is:

Definition 2 For any t > 0 and any tog, a BCH code is the cyclic

code with blocklength n and generator polynomaial

9(x) = LOM{my, (x), myy 1 (), .. Mg 21 ()}

where my, (x) is the minimal polynomial of a* € GF(¢™).

Definition 3 A primitive BCH code is a BCH code for which «
is primitive in GF(q™). []




5.2 Generating BCH codes
5.2.1 BCH bound and the generator polynomial

Theorem: If the roots of every codeword c(x) € C include

a,0?, -, o, then the minimum distance of C is bounded from

below by 2t + 1:

Proof:

Method of proof: Assume wg(c) =9 < 2t. Find contradiction.




Assume:




Expand cH?', keeping only the terms for which c; # 0.

(0,0---0)

where the last line is a 2t—tuple of zeros.
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e But each inner product of ¢ and a column is individually zero.

e Therefore, the product of ¢ with any any set of 0 columns is a

zero vector:

0= (levcjzv"' 7Cj5)'

e (&jé)Q (Ozj5)5

e Take determinant of the RHS; factor o/t from the i*" row.




1 ajl (a]1)2

0 = qJt izt tis

1 aoJs (aja)Q (Ozj5)5_1

e This is a Van der Monde determinant and cannot be = 0.
e But we assumed that it is 0.

e = contradiction. Therefore wg(c) > 2t.




5.2.2 BCH code design procedure
Parameters:
e Typically, communication problem dictates n and d,,;,.
e k£ may not be directly specified.
Design methods:

1. For primitive code, if n < 255, use table in Appendix E of
Wicker. =

. For primitive code, if 255 < n < 1023, use table in Appendix C
of Lin and Costello (1983 and 2004).

. If you don’t have the tables, proceed as follows:



abc
Note
NOTE: These tables are found in many  coding textbooks, not just these.


. Select n and dyyp,.

S

root of unity. (If o primitive, then so is code.)

. Find «, an n?

. Select j9. For convenience, I usually use 0.

. Need 2t consecutive powers of a and their conjugates as roots

of g(x).

. Determine all the roots and take LCM to get g(x).

. Determine G from g(x) if necessary.



abc
Note
NOTE:  We showed only primitive BCH codes in class.  As an exercise, work out what happens when \alpha is a non-primitive root of unity.


5.2.3 Example

Requirement: a 2-error correcting binary code with n = 15.
Solution: Use a BCH code. Take:

2t = 4
jo = 0 (assumed)

e Find a 15" root « of unity.

— The smallest field containing an element of order 15 is
GF(16) = GF(2%).

— Hence, « is primitive in GF(24).




Need at least 4 consecutive powers of a as roots of g(x):

If o is a root of g(x), then so are o?, a?, a®.

Still need o2 as a root.

Then of, a'?, a?* = o are conjugate roots of a3.

Now, exponents are 1,2,3,4,6,8,9,12.

e But only a and o were specified.

e Therefore mi(x) and ms(z) divide g(x).




Therefore,
g(x) = LCM|m4(z), ms(z)].

But m1(x) is of degree 4 and has a primitive root.

Therefore, mq(x) is a primitive polynomial.
One possible mq(x) is:

p(z) =1+z+ 2%
Can use p(a) = 0 to define arithmetic in GF(24).

Expand ms(x):

m3(x) (z —a”’)(z —a®)(z — a'¥)(z — a”)

1+x+x2+a:3+334




Finally, g(x) = LCM|m1(x), ms(z)] = mi(x) - mz(x).

deglg(z)] = n—k=38
ko= 7

and the code is a (15,7) code with d,;n, > 5.

glx)=14+a2* +2°+ 2%+ 2" + 28




5.3 Introduction to Reed-Solomon codes
5.3.1 Code definition and examples

5.3.1.1 The Codes

Definition 4 A Reed-Solomon Code is a ¢ —ary BCH code of
length n = q¢™ — 1.

[]

Properties:

e Roots of g(z) include 2t consecutive powers of a € GF(¢™).

a = 1.

e g(x) contains no conjugate roots ( Why?)

e Therefore, n —k =2t =dpcg — 1 (MDS!)




5.3.1.3 Encoding

1. Jointly select block length n and size ¢ of symbol field.

2. Choose error correction capability t.

3. Find a primitive element « in GF(q¢™).

4. Form the generator polynomial:

2t)

9(@) = (= 0) - (1 - 0% (&~ a




Example:

o n=15

e Symbol field of size 16

e Double error correction

(2 —a) (z—a)(z—a’)(z—a)

$4—|—0413333—|—Oé61’2—|—0431'—|—0410




5.3.2 MDS Codes
5.3.2.1 Definition of MDS Codes

Definition 5 Any LBC which meets the Singleton Bound is called
Maximum Distance Separable (MDS). []

Theorem: RS codes are MDS.
Proof:

n —k+1 (Singleton Bound)
2t+1 = n—k+1 by construction)




5.3.2.2 Duals
Theorem: The dual of an MDS code is MDS.
Proof:

Assume there is ¢/ € C* such that wy(c’) < k.

This is equivalent to saying C* is non-MDS. (Why?)
Let ¢y, =0, i=1,2,...,n—k in C*.

Since H is the generating matrix for C+,

— write the sub-matrix of H that generates the 0 positions of

c .




or as matrices

O0=a, -H,, a, #0

e Therefore, H,, is (n — k) X (n — k) singular sub-matrix of H.

e But, every linear combination of d — 1 = n — k£ columns of H is

linearly independent (property of C).

But this contradicts the assumption that wgy(c’) < k.




5.3.2.3 Information sets

Definition 6 In a linear block code, information set is a set of k

codeword coordinates which are linearly independent.

(Thus, any information set carries k£ information symbols).

Theorem Any set of k codeword coordinates of an MDS code is an

information set.
Proof:

e ( is a parity check matrix for C*.

e C* has dym, = k+ 1= any k columns of G are linearly
independent.

e Row rank = column rank. Therefore, any k X k£ submatrix can

be reduced to I, by elementary row operations.

[]



abc
Inserted Text
"an" information set


abc
Highlight

abc
Highlight


5.3.3 Modified MDS and RS codes

5.3.3.1 Punctured
Theorem: A punctured (n,k) MDS code is an (n — 1,k) MDS

code.
Proof:

e MDS: Any position can be a parity position, therefore

punctured.

e Puncturing reduces d;,;» by no more than 1, and
— dmin>nn—1)—k+1=n—k.
— But, by Singleton bound dy, < (n —1) —k+ 1

e Hence, dppinn =n—k=(n—-1)—k+ 1: MDS.




5.3.3.2 Shortened
Theorem: A shortened MDS code 1s MDS.
Proof:

Remove all codewords having 0 in a specified position:
k— k—1.

Delete that position from all codewords: n — n — 1.

In a subset of codewords, d,,;, may increase:
dmin > n—1)—(E—1)+1=n—k+ 1.

But by Singleton bound, dy;n < (n—1) — (kK —1) 4+ 1.

Therefore d,in, = (n — 1) — (kK — 1) + 1 and code is MDS.




5.3.3.3 Extended

Theorem: A narrow sense (¢ —1,k) RS code can be extended,

by adding a parity check, to form a noncyclic (¢, k,d) MDS code.

Proof: [Due to S. Roman/

e Let C be a narrow sense (jo =1) (¢ —1,k,d) RS code.

o Let c(x) € C, s.t. wy[c(x)] = d.




e Fxtend c(x). (Additional parity check on all positions.

1. If ¢(1) # 0, then wy|é(x)] =




. Now, if ¢(1) = 0, then

Write ¢(z) = p(z)g()

Then ¢(1) = p(1)g(1) =0

Since g(1) # 0, p(1) = 0.

Therefore g(z) = (x — 1)g(x) and §(x)|c(x).

This means that c(z) €< g(x) > .

Also §(z) has d = 2t + 1 zeros.

Therefore, wy[c(x)] = d + 1: contradiction!

Since we assumed wy|c(z)] = d, p(1) # 0 and ¢(1) # 0.
Therefore wy (é(x)) =d+ 1

[]




5.3.3.4 Doubly-extended

Theorem: Any narrow-sense, singly-extended (n+ 1,k) RS code

can be (further) extended to form a noncyclic (n + 2,k) g—ary

MDS code by ading the symbol c,11 to each code word, such that:

n—1

Cnp1 = — Y c+jo

7=0

where 0 = the BCH bound of the original BCH code.




