
5.0 BCH and Reed-Solomon Codes
5.1 Introduction

• A. Hocquenghem (1959), “Codes correcteur d’erreurs;”

• Bose and Ray-Chaudhuri (1960), “Error Correcting Binary
Group Codes;”

• First general family of algebraic codes defined by structure.

• Peterson: proved BCH codes cyclic; first general coding text;

• Gorenstein & Zierler extended to fields of size pm.

• Decoders developed by Peterson, Zierler, Berlekamp, Massey,
Retter, Cooper, others.

1

5.1.1 Attributes

• cyclic code

• wide selection of n, k, dmin

• binary (will relax later) symbols

• efficient encoding and decoding algorithms

• algorithmic definition

5.1.2 Definition

• m, t integers;

• p prime;

• q = pm;

• Let α be an element of order n in GF (qm).

Basic definition of binary BCH codes:

2

Definition 1 For m ≥ 3 and t < 2m−1 there exists a binary BCH
code with

• block length n = 2m − 1

• n− k ≤ mt

• dmin ≥ 2t + 1

¤
The generator polynomial g(x) of this code is the lowest-degree
polynomial over GF(2) which has α, α2, · · · , α2t among its roots.

3

A more formal and complete definition is:

Definition 2 For any t > 0 and any t0, a BCH code is the cyclic
code with blocklength n and generator polynomial

g(x) = LCM{mt0(x),mt0+1(x), . . . , mt0+2t−1(x)}
¤

where mt0(x) is the minimal polynomial of αt0 ∈ GF (qm).

Definition 3 A primitive BCH code is a BCH code for which α

is primitive in GF (qm). ¤

4

5.2 Generating BCH codes
5.2.1 BCH bound and the generator polynomial

Theorem: If the roots of every codeword c(x) ∈ C include
α, α2, · · · , α2t, then the minimum distance of C is bounded from
below by 2t + 1:

dmin ≥ dBCH = 2t + 1

Proof:

c(αj) = 0, j = 1, 2, · · · , 2t

n−1∑

i=0

ci(αj)i = 0, j = 1, 2, · · · , 2t

Method of proof: Assume wH(c) = δ ≤ 2t. Find contradiction.

5

Let

H 4=




1 α α2 · · · αn−1

1 (α2) (α2)2 · · · (α2)n−1

...

1 (α2t) (α2t)2 · · · (α2t)n−1




where
c ·HT = 0

Assume:

wH(c) = δ ≤ 2t

6

Expand cHT , keeping only the terms for which cj 6= 0.

0 = (cj1 , cj2 , · · · , cjδ
) ·




αj1 (α2)j1 · · · (α2t)j1

αj2 (α2)j2 · · · (α2t)j2

...

αjδ (α2)jδ · · · (α2t)jδ




= (cj1 , cj2 , · · · , cjδ
) ·




αj1 (αj1)2 · · · (αj1)2t

αj2 (αj2)2 · · · (αj2)2t

...

αjδ (αjδ)2 · · · (αjδ)2t




= (0, 0 · · · 0)

where the last line is a 2t−tuple of zeros.

7

• But each inner product of c and a column is individually zero.

• Therefore, the product of c with any any set of δ columns is a
zero vector:

0 = (cj1 , cj2 , · · · , cjδ
) ·




αj1 (αj1)2 · · · (αj1)δ

αj2 (αj2)2 · · · (αj2)δ

...

αjδ (αjδ)2 · · · (αjδ)δ




• Take determinant of the RHS; factor αji from the ith row.

8

0 = αj1+j2+···+jδ

∣∣∣∣∣∣∣∣∣∣∣∣

1 αj1 (αj1)2 · · · (αj1)δ−1

1 αj2 (αj2)2 · · · (αj2)δ−1

...

1 αjδ (αjδ)2 · · · (αjδ)δ−1

∣∣∣∣∣∣∣∣∣∣∣∣
• This is a Van der Monde determinant and cannot be = 0.

• But we assumed that it is 0.

• ⇒ contradiction. Therefore wH(c) ≥ 2t. ¤

9

5.2.2 BCH code design procedure

Parameters:

• Typically, communication problem dictates n and dmin.

• k may not be directly specified.

Design methods:

1. For primitive code, if n ≤ 255, use table in Appendix E of
Wicker.

2. For primitive code, if 255 ≤ n ≤ 1023, use table in Appendix C
of Lin and Costello (1983 and 2004).

3. If you don’t have the tables, proceed as follows:

10

abc
Note
NOTE: These tables are found in many coding textbooks, not just these.

1. Select n and dmin.

2. Find α, an nth root of unity. (If α primitive, then so is code.)

3. Select j0. For convenience, I usually use 0.

4. Need 2t consecutive powers of α and their conjugates as roots
of g(x).

5. Determine all the roots and take LCM to get g(x).

6. Determine G from g(x) if necessary.

11

abc
Note
NOTE: We showed only primitive BCH codes in class. As an exercise, work out what happens when \alpha is a non-primitive root of unity.

5.2.3 Example

Requirement: a 2-error correcting binary code with n = 15.
Solution: Use a BCH code. Take:

2t = 4

j0 = 0 (assumed)

• Find a 15th root α of unity.

– The smallest field containing an element of order 15 is
GF (16) = GF (24).

– Hence, α is primitive in GF (24).

12

• Need at least 4 consecutive powers of α as roots of g(x):

– If α is a root of g(x), then so are α2, α4, α8.

– Still need α3 as a root.

– Then α6, α12, α24 = α9 are conjugate roots of α3.

– Now, exponents are 1, 2, 3, 4, 6, 8, 9, 12.

• But only α and α3 were specified.

• Therefore m1(x) and m3(x) divide g(x).

13

Therefore,
g(x) = LCM [m1(x), m3(x)].

• But m1(x) is of degree 4 and has a primitive root.

• Therefore, m1(x) is a primitive polynomial.

• One possible m1(x) is:

p(x) = 1 + x + x4.

• Can use p(α) = 0 to define arithmetic in GF (24).

• Expand m3(x):

m3(x) = (x− α3)(x− α6)(x− α12)(x− α9)

= 1 + x + x2 + x3 + x4

14

Finally, g(x) = LCM [m1(x), m3(x)] = m1(x) ·m3(x).

deg[g(x)] = n− k = 8

k = 7

and the code is a (15, 7) code with dmin ≥ 5.

g(x) = 1 + x4 + x5 + x6 + x7 + x8

15

5.3 Introduction to Reed-Solomon codes
5.3.1 Code definition and examples

5.3.1.1 The Codes

Definition 4 A Reed-Solomon Code is a qm−ary BCH code of
length n = qm − 1.

¤
Properties:

• Roots of g(x) include 2t consecutive powers of α ∈ GF (qm).
αn = 1.

• g(x) contains no conjugate roots (Why?)

• Therefore, n− k = 2t = dBCH − 1 (MDS!)

16

5.3.1.3 Encoding

1. Jointly select block length n and size qm of symbol field.

2. Choose error correction capability t.

3. Find a primitive element α in GF (qm).

4. Form the generator polynomial:

g(x) = (x− α) · (x− α2) · · · (x− α2t)

17

Example:

• n = 15

• Symbol field of size 16

• Double error correction

g(x) = (x− α) · (x− α2)(x− α3)(x− α4)

= x4 + α13x3 + α6x2 + α3x + α10

18

5.3.2 MDS Codes

5.3.2.1 Definition of MDS Codes

Definition 5 Any LBC which meets the Singleton Bound is called
Maximum Distance Separable (MDS). ¤

Theorem: RS codes are MDS.
Proof:

dmin ≤ n− k + 1 (Singleton Bound)

dmin ≥ 2t + 1 = n− k + 1 by construction)

¤

19

5.3.2.2 Duals

Theorem: The dual of an MDS code is MDS.

Proof:

• Assume there is c′ ∈ C⊥ such that wH(c′) < k.

• This is equivalent to saying C⊥ is non-MDS. (Why?)

• Let cwi
= 0, i = 1, 2, . . . , n− k in C⊥.

• Since H is the generating matrix for C⊥,

– write the sub-matrix of H that generates the 0 positions of
c′.

(0, 0, · · · , 0)n−k =
k∑

i=1

awi
· hwi

20

or as matrices

0 = aw ·Hw, aw 6= 0

• Therefore, Hw is (n− k)× (n− k) singular sub-matrix of H.

• But, every linear combination of d− 1 = n− k columns of H is
linearly independent (property of C).

But this contradicts the assumption that wH(c′) < k. ¤

21

5.3.2.3 Information sets

Definition 6 In a linear block code, information set is a set of k

codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem Any set of k codeword coordinates of an MDS code is an
information set.
Proof:

• G is a parity check matrix for C⊥.

• C⊥ has dmin = k + 1 ⇒ any k columns of G are linearly
independent.

• Row rank = column rank. Therefore, any k × k submatrix can
be reduced to Ik by elementary row operations.

¤

22

abc
Inserted Text
"an" information set

abc
Highlight

abc
Highlight

5.3.3 Modified MDS and RS codes

5.3.3.1 Punctured
Theorem: A punctured (n, k) MDS code is an (n− 1, k) MDS
code.
Proof:

• MDS: Any position can be a parity position, therefore
punctured.

• Puncturing reduces dmin by no more than 1, and

– dmin ≥ (n− 1)− k + 1 = n− k.

– But, by Singleton bound dmin ≤ (n− 1)− k + 1

• Hence, dmin = n− k = (n− 1)− k + 1: MDS. ¤

23

5.3.3.2 Shortened
Theorem: A shortened MDS code is MDS.
Proof:

• Remove all codewords having 0 in a specified position:
k → k − 1.

• Delete that position from all codewords: n → n− 1.

• In a subset of codewords, dmin may increase:
dmin ≥ (n− 1)− (k − 1) + 1 = n− k + 1.

• But by Singleton bound, dmin ≤ (n− 1)− (k − 1) + 1.

• Therefore dmin = (n− 1)− (k − 1) + 1 and code is MDS. ¤

24

5.3.3.3 Extended

Theorem: A narrow sense (q − 1, k) RS code can be extended,
by adding a parity check, to form a noncyclic (q, k, d) MDS code.

Proof: [Due to S. Roman]

• Let C be a narrow sense (j0 = 1) (q − 1, k, d) RS code.

• Let c(x) ∈ C, s.t. wH [c(x)] = d.

25

• Extend c(x). (Additional parity check on all positions.

ĉ(x) = c(x) + cnxn

cn = −
n−1∑

i=0

ci = −c(1)

1. If c(1) 6= 0, then wH [ĉ(x)] = d + 1.

26

2. Now, if c(1) = 0, then

– Write c(x) = p(x)g(x)
– Then c(1) = p(1)g(1) = 0
– Since g(1) 6= 0, p(1) = 0.
– Therefore ĝ(x) = (x− 1)g(x) and ĝ(x)|c(x).
– This means that c(x) ∈< ĝ(x) > .

– Also ĝ(x) has d̂ = 2t + 1 zeros.
– Therefore, wH [c(x)] = d + 1: contradiction!
– Since we assumed wH [c(x)] = d, p(1) 6= 0 and c(1) 6= 0.
– Therefore wH(ĉ(x)) = d + 1

¤

27

5.3.3.4 Doubly-extended

Theorem: Any narrow-sense, singly-extended (n + 1, k) RS code
can be (further) extended to form a noncyclic (n + 2, k) q−ary
MDS code by ading the symbol cn+1 to each code word, such that:

cn+1 = −
n−1∑

j=0

c + jαjδ

where δ = the BCH bound of the original BCH code. ¤

28

