5.0 BCH and Reed-Solomon Codes

5.1 Introduction

- A. Hocquenghem (1959), "Codes correcteur d'erreurs;"
- Bose and Ray-Chaudhuri (1960), "Error Correcting Binary Group Codes;"
- First general family of algebraic codes defined by structure.
- Peterson: proved BCH codes cyclic; first general coding text;
- Gorenstein \& Zierler extended to fields of size p^{m}.
- Decoders developed by Peterson, Zierler, Berlekamp, Massey, Retter, Cooper, others.

5.1.1 Attributes

- cyclic code
- wide selection of $n, k, d_{\text {min }}$
- binary (will relax later) symbols
- efficient encoding and decoding algorithms
- algorithmic definition

5.1.2 Definition

- m, t integers;
- p prime;
- $q=p^{m}$;
- Let α be an element of order n in $G F\left(q^{m}\right)$.

Basic definition of binary BCH codes:

Definition 1 For $m \geq 3$ and $t<2^{m-1}$ there exists a binary $B C H$ code with

- block length $n=2^{m}-1$
- $n-k \leq m t$
- $d_{m i n} \geq 2 t+1$

The generator polynomial $g(x)$ of this code is the lowest-degree polynomial over $\operatorname{GF}(2)$ which has $\alpha, \alpha^{2}, \cdots, \alpha^{2 t}$ among its roots.

A more formal and complete definition is:

Definition 2 For any $t>0$ and any t_{0}, a BCH code is the cyclic code with blocklength n and generator polynomial

$$
g(x)=L C M\left\{m_{t_{0}}(x), m_{t_{0}+1}(x), \ldots, m_{t_{0}+2 t-1}(x)\right\}
$$

where $m_{t_{0}}(x)$ is the minimal polynomial of $\alpha^{t_{0}} \in G F\left(q^{m}\right)$.

Definition $3 A$ primitive $B C H$ code is a $B C H$ code for which α is primitive in $G F\left(q^{m}\right)$.

5.2 Generating BCH codes

5.2.1 BCH bound and the generator polynomial

Theorem: If the roots of every codeword $c(x) \in \mathcal{C}$ include $\alpha, \alpha^{2}, \cdots, \alpha^{2 t}$, then the minimum distance of \mathcal{C} is bounded from below by $2 t+1$:

$$
d_{\min } \geq d_{B C H}=2 t+1
$$

Proof:

$$
\begin{aligned}
c\left(\alpha^{j}\right) & =0, j=1,2, \cdots, 2 t \\
\sum_{i=0}^{n-1} c_{i}\left(\alpha^{j}\right)^{i} & =0, j=1,2, \cdots, 2 t
\end{aligned}
$$

Method of proof: Assume $w_{H}(\mathbf{c})=\delta \leq 2 t$. Find contradiction.

Let

$$
\mathbf{H} \triangleq\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \left(\alpha^{2}\right) & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & & & & \\
1 & \left(\alpha^{2 t}\right) & \left(\alpha^{2 t}\right)^{2} & \cdots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

where

$$
\mathbf{c} \cdot \mathbf{H}^{T}=0
$$

Assume:

$$
w_{H}(\mathbf{c})=\delta \leq 2 t
$$

Expand $\mathbf{c H}^{T}$, keeping only the terms for which $c_{j} \neq 0$.

$$
\begin{aligned}
\mathbf{0} & =\left(c_{j_{1}}, c_{j_{2}}, \cdots, c_{j_{\delta}}\right) \cdot\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{2}\right)^{j_{1}} & \cdots & \left(\alpha^{2 t}\right)^{j_{1}} \\
\alpha^{j_{2}} & \left(\alpha^{2}\right)^{j_{2}} & \cdots & \left(\alpha^{2 t}\right)^{j_{2}} \\
\vdots & & & \\
\alpha^{j_{\delta}} & \left(\alpha^{2}\right)^{j_{\delta}} & \cdots & \left(\alpha^{2 t}\right)^{j_{\delta}}
\end{array}\right] \\
& =\left(c_{j_{1}}, c_{j_{2}}, \cdots, c_{j_{\delta}}\right) \cdot\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\vdots & & & \\
\alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{2 t}
\end{array}\right] \\
& =(0,0 \cdots 0)
\end{aligned}
$$

where the last line is a $2 t$-tuple of zeros.

- But each inner product of \mathbf{c} and a column is individually zero.
- Therefore, the product of \mathbf{c} with any any set of δ columns is a zero vector:

$$
\mathbf{0}=\left(c_{j_{1}}, c_{j_{2}}, \cdots, c_{j_{\delta}}\right) \cdot\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{\delta} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{\delta} \\
\vdots & & & \\
\alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{\delta}
\end{array}\right]
$$

- Take determinant of the RHS; factor $\alpha^{j_{i}}$ from the $i^{t h}$ row.

$$
0=\alpha^{j_{1}+j_{2}+\cdots+j_{\delta}}\left|\begin{array}{ccccc}
1 & \alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{\delta-1} \\
1 & \alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{\delta-1} \\
\vdots & & & & \\
1 & \alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{\delta-1}
\end{array}\right|
$$

- This is a Van der Monde determinant and cannot be $=0$.
- But we assumed that it is 0 .
- \Rightarrow contradiction. Therefore $w_{H}(\mathbf{c}) \geq 2 t$.

5.2.2 BCH code design procedure

Parameters:

- Typically, communication problem dictates n and $d_{m i n}$.
- k may not be directly specified.

Design methods:

1. For primitive code, if $n \leq 255$, use table in Appendix E of Wicker.
2. For primitive code, if $255 \leq n \leq 1023$, use table in Appendix C of Lin and Costello (1983 and 2004).
3. If you don't have the tables, proceed as follows:
4. Select n and $d_{m i n}$.

5. Find α, an $n^{\text {th }}$ root of unity. (If α primitive, then so is code.)
6. Select j_{0}. For convenience, I usually use 0 .
7. Need $2 t$ consecutive powers of α and their conjugates as roots of $g(x)$.
8. Determine all the roots and take LCM to get $g(x)$.
9. Determine G from $g(x)$ if necessary.

5.2.3 Example

Requirement: a 2 -error correcting binary code with $n=15$. Solution: Use a BCH code. Take:

$$
\begin{aligned}
2 t & =4 \\
j_{0} & =0 \text { (assumed })
\end{aligned}
$$

- Find a $15^{\text {th }}$ root α of unity.
- The smallest field containing an element of order 15 is $G F(16)=G F\left(2^{4}\right)$.
- Hence, α is primitive in $G F\left(2^{4}\right)$.
- Need at least 4 consecutive powers of α as roots of $g(x)$:
- If α is a root of $g(x)$, then so are $\alpha^{2}, \alpha^{4}, \alpha^{8}$.
- Still need α^{3} as a root.
- Then $\alpha^{6}, \alpha^{12}, \alpha^{24}=\alpha^{9}$ are conjugate roots of α^{3}.
- Now, exponents are $1,2,3,4,6,8,9,12$.
- But only α and α^{3} were specified.
- Therefore $m_{1}(x)$ and $m_{3}(x)$ divide $g(x)$.

Therefore,

$$
g(x)=L C M\left[m_{1}(x), m_{3}(x)\right]
$$

- But $m_{1}(x)$ is of degree 4 and has a primitive root.
- Therefore, $m_{1}(x)$ is a primitive polynomial.
- One possible $m_{1}(x)$ is:

$$
p(x)=1+x+x^{4}
$$

- Can use $p(\alpha)=0$ to define arithmetic in $G F\left(2^{4}\right)$.
- Expand $m_{3}(x)$:

$$
\begin{aligned}
m_{3}(x) & =\left(x-\alpha^{3}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{12}\right)\left(x-\alpha^{9}\right) \\
& =1+x+x^{2}+x^{3}+x^{4}
\end{aligned}
$$

Finally, $g(x)=L C M\left[m_{1}(x), m_{3}(x)\right]=m_{1}(x) \cdot m_{3}(x)$.

$$
\begin{aligned}
\operatorname{deg}[g(x)] & =n-k=8 \\
k & =7
\end{aligned}
$$

and the code is a $(15,7)$ code with $d_{m i n} \geq 5$.

$$
g(x)=1+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}
$$

5.3 Introduction to Reed-Solomon codes

5.3.1 Code definition and examples

5.3.1.1 The Codes

Definition 4 A Reed-Solomon Code is a q^{m}-ary BCH code of length $n=q^{m}-1$.

Properties:

- Roots of $g(x)$ include $2 t$ consecutive powers of $\alpha \in G F\left(q^{m}\right)$. $\alpha^{n}=1$.
- $g(x)$ contains no conjugate roots (Why?)
- Therefore, $n-k=2 t=d_{B C H}-1$ (MDS!)

5.3.1.3 Encoding

1. Jointly select block length n and size q^{m} of symbol field.
2. Choose error correction capability t.
3. Find a primitive element α in $G F\left(q^{m}\right)$.
4. Form the generator polynomial:

$$
g(x)=(x-\alpha) \cdot\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{2 t}\right)
$$

Example:

- $n=15$
- Symbol field of size 16
- Double error correction

$$
\begin{aligned}
g(x) & =(x-\alpha) \cdot\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right) \\
& =x^{4}+\alpha^{13} x^{3}+\alpha^{6} x^{2}+\alpha^{3} x+\alpha^{10}
\end{aligned}
$$

5.3.2 MDS Codes

5.3.2.1 Definition of MDS Codes

Definition 5 Any LBC which meets the Singleton Bound is called Maximum Distance Separable (MDS).

Theorem: RS codes are MDS.
Proof:

$$
\begin{aligned}
& d_{\min } \leq n-k+1 \quad(\text { Singleton Bound }) \\
& \left.d_{\min } \geq 2 t+1=n-k+1 \text { by construction }\right)
\end{aligned}
$$

5.3.2.2 Duals

Theorem: The dual of an MDS code is MDS.

Proof:

- Assume there is $\mathbf{c}^{\prime} \in \mathcal{C}^{\perp}$ such that $w_{H}\left(\mathbf{c}^{\prime}\right)<k$.
- This is equivalent to saying \mathcal{C}^{\perp} is non-MDS. (Why?)
- Let $c_{w_{i}}=0, i=1,2, \ldots, n-k$ in \mathcal{C}^{\perp}.
- Since \mathbf{H} is the generating matrix for \mathcal{C}^{\perp},
- write the sub-matrix of \mathbf{H} that generates the 0 positions of c^{\prime}.

$$
(0,0, \cdots, 0)_{n-k}=\sum_{i=1}^{k} a_{w_{i}} \cdot h_{w_{i}}
$$

or as matrices

$$
\mathbf{0}=\mathbf{a}_{w} \cdot \mathbf{H}_{w}, \mathbf{a}_{w} \neq \mathbf{0}
$$

- Therefore, \mathbf{H}_{w} is $(n-k) \times(n-k)$ singular sub-matrix of \mathbf{H}.
- But, every linear combination of $d-1=n-k$ columns of \mathbf{H} is linearly independent (property of \mathcal{C}).

But this contradicts the assumption that $w_{H}\left(\mathbf{c}^{\prime}\right)<k$.

5.3.2.3 Information sets

Definition 6 In a linear block code, information set is a set of k codeword coordinates which are linearly independent.
(Thus, any information set carries k information symbols).

Theorem Any set of k codeword coordinates of an $M D S$ code is an information set.
Proof:

- G is a parity check matrix for \mathcal{C}^{\perp}.
- \mathcal{C}^{\perp} has $d_{\text {min }}=k+1 \Rightarrow$ any k columns of G are linearly independent.
- Row rank $=$ column rank. Therefore, any $k \times k$ submatrix can be reduced to I_{k} by elementary row operations.

5.3.3 Modified MDS and RS codes

5.3.3.1 Punctured

Theorem: A punctured $(n, k) M D S$ code is an $(n-1, k) M D S$ code.
Proof:

- MDS: Any position can be a parity position, therefore punctured.
- Puncturing reduces $d_{\text {min }}$ by no more than 1 , and
$-d_{\text {min }} \geq(n-1)-k+1=n-k$.
- But, by Singleton bound $d_{\min } \leq(n-1)-k+1$
- Hence, $d_{\text {min }}=n-k=(n-1)-k+1$: MDS.

5.3.3.2 Shortened

Theorem: A shortened $M D S$ code is $M D S$.
Proof:

- Remove all codewords having 0 in a specified position: $k \rightarrow k-1$.
- Delete that position from all codewords: $n \rightarrow n-1$.
- In a subset of codewords, $d_{\text {min }}$ may increase: $d_{\text {min }} \geq(n-1)-(k-1)+1=n-k+1$.
- But by Singleton bound, $d_{\min } \leq(n-1)-(k-1)+1$.
- Therefore $d_{\min }=(n-1)-(k-1)+1$ and code is MDS.

5.3.3.3 Extended

Theorem: A narrow sense $(q-1, k) R S$ code can be extended, by adding a parity check, to form a noncyclic (q, k, d) MDS code.

Proof: [Due to S. Roman]

- Let \mathcal{C} be a narrow sense $\left(j_{0}=1\right)(q-1, k, d) \mathrm{RS}$ code .
- Let $c(x) \in \mathcal{C}$, s.t. $w_{H}[c(x)]=d$.
- Extend $c(x)$. (Additional parity check on all positions.

$$
\begin{aligned}
\hat{c}(x) & =c(x)+c_{n} x^{n} \\
c_{n} & =-\sum_{i=0}^{n-1} c_{i}=-c(1)
\end{aligned}
$$

1. If $c(1) \neq 0$, then $w_{H}[\hat{c}(x)]=d+1$.
2. Now, if $c(1)=0$, then

- Write $c(x)=p(x) g(x)$
- Then $c(1)=p(1) g(1)=0$
- Since $g(1) \neq 0, p(1)=0$.
- Therefore $\hat{g}(x)=(x-1) g(x)$ and $\hat{g}(x) \mid c(x)$.
- This means that $c(x) \in<\hat{g}(x)>$.
- Also $\hat{g}(x)$ has $\hat{d}=2 t+1$ zeros.
- Therefore, $w_{H}[c(x)]=d+1$: contradiction!
- Since we assumed $w_{H}[c(x)]=d, p(1) \neq 0$ and $c(1) \neq 0$.
- Therefore $w_{H}(\hat{c}(x))=d+1$

5.3.3.4 Doubly-extended

Theorem: Any narrow-sense, singly-extended $(n+1, k) R S$ code can be (further) extended to form a noncyclic $(n+2, k) q-a r y$ MDS code by ading the symbol c_{n+1} to each code word, such that:

$$
c_{n+1}=-\sum_{j=0}^{n-1} c+j \alpha^{j \delta}
$$

where $\delta=$ the BCH bound of the original BCH code.

