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5.0 Reed-Solomon Codes and their Relatives

5.1 Summary of the “Conventional” Model of RS Codes
5.1.1 History

First general family of algebraic codes defined by structure.
A. Hocquenghem (1959), “Codes correcteur d'erreurs;”

Bose and Ray-Chaudhuri (1960), “Error Correcting Binary Group
Codes;"

|.S. Reed and G. Solomon, " Polynomial codes over certain finite
fields,” Siam J. Ind. and App. Math, v8, pp 300-304, 1960.

Decoders developed by Peterson, Zierler, Berlekamp, Massey,
Cooper, Retter, Sudan, others.
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5.1.2 Definition

Definition 1 A Reed-Solomon Code is a cyclic code generated by

2t)

g(@) = (@ —a)(z—a®) - (z-a

where « is primitive in GF(q™ ).

Therefore,
e length =¢™ —1
® dpin = 2t + 1 (will prove using Fourier transforms)
e n — k =2t = RS codes meet the Singleton Bound

Definition 2 Any LBC which meets the Singleton Bound is called
Maximum Distance Separable (MDS). []

Corollary: RS codes are MDS. []
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5.1.3 Encoding
. Jointly select size ¢ of symbol field and block length n = ¢ — 1.
. Choose error correction capability .
. Find a primitive element o in GF(¢™).

. Form the generator polynomial:

g(x) = (z—a) (z—a”) - (z —a™)
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Example:
e =15
e Symbol field of size 16

e Double error correction (t = 2)

9() (z—a) (z—a)(z—a’)(z—a’)

334—|—05135133—|—Oé6$2—|—&333—|—0410

e (15,11) RS code over GF(16), dpin = 5.
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5.1.4 Duals of RS Codes

Theorem 1 Dual of RS code is an (n,n — k) RS code with

Theorem 2 The dual of an MDS code is MDS.

Proof: Count the (remaining)roots.

Dual of previous ex: (15,4) over GF(16), d.nin = 12.
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5.1.5 Information sets

Definition 3 /n a linear block code, an information set is a set of k
codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem 3 Any set of k codeword coordinates of an MDS code is an
information set. []
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5.1.6 Modified MDS and RS codes

5.1.6.1 Punctured
Theorem 4 A punctured (n, k) MDS code is an (n —1,k) MDS code.

Proof: Puncturing does not change information sets. []




(©2003, A. Brinton Cooper III

5.1.6.2 Shortened
Theorem 5 A shortened MDS code is MDS.
Proof:
e loshorten, Kk — k —1;
e thenn — n — 1.

e But remaining information sets are not changed.

e (n—1)—(k—1) =2t
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5.1.6.3 Extended

Theorem 6 A narrow sense (¢ — 1, k) RS code can be extended, by

adding a parity check, to form a noncyclic (q,k,d) MDS code.
Comments:

e n —n+ 1, k unchanged.

e Now, any position contains a parity check on the other n.

e Any k positions remain independent
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5.1.6.4 Doubly-extended

Theorem 7 Any narrow-sense, singly-extended (n+ 1,k) RS code can
be (further) extended to form a noncyclic (n + 2, k) g—ary MDS code
by adding the symbol ¢, 11 to each code word, such that:

n—1

Cn+l = — E c+ jao’
J=0

where § = the BCH bound of the original BCH code.

Proof:

See text, pp 171-172.

10
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5.2 Summary of the “Conventional Model” of BCH Codes
5.2.1 Definition

t, tg, m, n integers;

p prime;

a of order n in GF(¢™).

11
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Definition 4 For anyt > 0 and any ty, a BCH code is the cyclic code
with blocklength n and generator polynomial

g(x) = LOMA{my, (), mig+1(2), - - ., Mg 42e-1() )

where my, () is the minimal polynomial of a'® € GF(¢™).

Definition 5 A primitive BCH code is a BCH code for which « is
primitive in GF(q™). []

12
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5.2.2 Generating BCH codes
5.2.2.1 BCH bound and the generator polynomial

Theorem 8 [f the roots of every codeword c(x) € C include
a,a?, -, a’t, then the minimum distance of C is bounded from
below by 2t + 1:

Apmin > dpog = 2t + 1

We call dpoy

e BCH (lower) bound on d;n, or

e the design distance of the code.

13
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5.2.2.2 To Design a BCH Code

Parameters:
e Select n and d,,,;n,.
e Determine k£ by designing the code.

e If k& is not satisfactory, REPEAT. ELSE,

1. Find a, an n'"* root of unity in some extension field. (If v is

primitive, then so is code.)

2. Select 7.
3. Write

g(x) = lem(mq(x), ma(x), - mo(x))

4. Determine G from g(x) if necessary.

14
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5.2.2.3 Example

Requirement: a 2-error correcting binary code with n = 15.
Solution: Use a BCH code with 2¢ =4 and dpcyg = 5.

o Let o be a 15" root of unity; take jo = 0.
— The smallest field containing an element of order 15 is
GF(16) = GF(2%).
— Hence, « is primitive in GF(2%).

Let o be a root of g(x), then so are a2, a*, a®.

Also need o to have 4 consecutive powers.

So, g(z) = lem|my(x), mo(x), m3(x), my(z)]

But m1(X) = ma(x) = my(x) by conjugacy.
Therefore g(x) = lem|mq(x), ms(z)] = m1(x) - mz(x).

Exponents of roots of g(x) are {1,2,3,4,6,8,9,12}.

15
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For example,

p(x) =1+z+ 2

(z —a’)(z —a")(z — a?)(z — )
1+a+z°+2° +a°
1I+z+2(1+2+2°+2°+2

l+a*+ 2>+ 2%+ 27 + 28
deg[g(z)] n—k=3
k 7.

So, the code is a (15,7) code with d,,;, > 5.
Since wr(g(x)) =5, dmin = 5.

16
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5.3 Codes based on the Fourier Transform
5.3.1 Fourier Transforms in Finite Fields

1. Recall Fourier transform:
e v=(vg,V1,...,U,_1): real or complex.

o V=(Vy,V1,...,V,_1): the discrete Fourier transform of v,

where
n—1

Vi = E eI2mik/ny. kb =0,...,n—1.
i=0
th

o 127/ is a complex n

root of unity.

17
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2. The Finite Field Fourier Transform (FFFT or GFFT)
o Let ord(a) =n in GF(q).
o Let ve GF(q)".

Definition 6 The Finite Field Fourier Transform of v is
V = (V07 V17 ceey Vn—l)' Where

n—1
V; = g o ;.
i=0

Then v and V are a Fourier transform pair,

vV «— V.

e V has length n because o™ = 1.

e V,eGF(q), j=0,1,...,n—1.

18
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e DFT exists for every n for real and complex numbers.

o FT exists for GF(q) only if n|(¢ —1). (Why?)

Now, let
n|¢"™ — 1 for some m.

Then there exists element w of order n in GF(¢™) and

n—1

Vi = Zwijvj, VeGF(q™m)".

1=0

So, in general,

v € GF(q)"

V. € GF(™)"

19
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Note:

Say v is time domain signal. Then ¢ is a discrete time variable.

Say V is spectrum of v or is the frequency domain representation,
and j is the “frequency.”

Any factor of ¢"* — 1 can be a blocklength of F{-}.

Most interesting is the primitive blocklength, n = ¢™ — 1.

It is easier to decode in the frequency domain (analog to linear
systems?).
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5.3.2 Properties of the FFFT

Hereafter, let {v;} < {V;} be a Fourier transform pair.

1. Additivity: {\v; + pw;} < {A\V,; + uW;} are a Fourier transform
pair.
Proof:

F{li + pw;p = Z a¥ (Av; + pw;)

)\Za’jvi —|—,LLZofjwj

AV + pW;

21
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2. Modulation {v;a™} « {V{(j11))} are a Fourier transform pair.

Proof:

22



(©2003, A. Brinton Cooper III 23

3. Inverses Over GF'(q),

]_n—l
vi:EZa”Vj, i=0,1,....,n—1.
j=0

Proof: In the Fourier transform, multiply, sum, and re-order.

n—1
E :(X_QJLG E : —1J E :(ijvk
7=0

J=0

1 n—1
Vk v v
0

—0

n_
k

n—1 n—1

]{;:O :

But ¢™ — 1 = p™ — 1 = nb. Therefore, p does not divide n.
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Since o™ =1 and

" —1=(x—1)(z" ' 2"+

™M

a"™ is a root of (1) and

n—1
E :azr —0
=1

if » %0 mod n and

n—1
E :Oéw — = E :Oé(k_z)j
1=1

if r =0 mod n.

24
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4. Convolution Suppose ¢; = f;g;, 1 =0,...,n—1. Then, E; is
the cyclic convolution of I; and G.

Proof:

n—1
L Z o’ figi
1=0

1 n—1 n—1
ij ki
- o f; o k
i—0 k—0

where ((-)) & mod n. This is the formula for cyclic convolution.

25
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Exercise: Show that if E; = F;G; then

n—1
1
e; =~ fidi-i)-
1=1

5. Translation

(vt < {V;a¥}
{a'vi} < AViGrit
{vqa—1yt < 1V;ol}

Proof: Exercise.

26
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6. Notation

1
Up—1Z"' ~ + -+ v12 + 19

V1" L iz + V

where

{v} = {V}
as before.
Theorem 9 (a) v(a’) =0V, = 0.
(b) V(ia™7)=0&v; =0.

Proof: By direct substitution and observation.

27
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7. Decimation

e c=(cp,C1,...,Cp_1).

e Choose b relatively prime to n.

e Let P:i— bi ( mod n) define a permutation ¢’ of c.

/A
C = C((bi))

P is a cyclic decimation, choosing every
cyclic fashion.

bth

component of ¢ in a

28
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Theorem 10 Let GCD(b,n) =1,bB=1 mod n. Then,
{c'} < {C’} where
Cj = Cysiy)

Proof:

GCD(b,n) =1 < bB +nN = 1.
So, by definition,

C’ Z e
Z &(bB—I—nN)ijC((bi))
> a"P e
Z &i’BjCi/
N

&:7

where the last step is by the translation property.
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8. Linear Complexity The Linear Recursion:

L
Vk:—ZAij;_j, k=L+1,...

g=1

is characterized by A = (Ay,...,Ar) and by length L.

Definition 7 {A, L} is an Autoregressive Filter that satisfies the

recursion.

[]

30
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Definition 8 The length of the shortest linear recursion that

generates a sequence Vy, Vi,...,V,_1 is called the linear complexity
of V = (Vo, Vl, c. Vn—l)-

Note: Recursion V can be considered as the Fourier transform of an
n-tuple. []

Theorem 11 The linear complexity of a vector V of finite length

(cyclically extended?) equals the Hamming weight of its Fourier
transform.

31
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Proof:
For v= (vg,...,0n—1), let v; #0, j € {i1,%2,...,7q4}. Consider

Let a(x) be the inverse Fourier transform of A(x). Then,

a;

Orai:()(:)ie{il,..

1 n—1 .
- Z a—zkAk
" k=0

d

% H(l —a'a)

.,1q}. Therefore, a; =0 < v; # 0, Vi, and

a;v; = 0

32
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5.3.4 RS Codes by Fourier Transforms

We require:
e Symbols from GF'(q) and n|q — 1.

e Time domain and spectral components from GF'(q).

Definition 9 A Reed-Solomon Code of length n is one for which

Cj:O7 36{307,70—'_17]0—'—277]0+2t—1}

From a previous theorem:

c(w) =0« C; =0, where w" = 1.

Therefore, if jo =1,

9(x) = (z —w)(z —w?) - (z —w™).

33
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Taking the inverse transform produces a non-systematic code:

n—1
1 L
c(x) = F H{C} = - » WY,
1=0

If the order of w is ¢ — 1 then w is primitive and n = q — 1.
Therefore, for a code satisfying (2), BCH bound requires:

i > 2t +1=n—k+1
But by Singleton bound:

Amin <2t +1=n—-k+1
Therefore, for the RS codes:

Apmin =2t+1=n—k+1

and, for fixed (n, k) no code can have larger d,,;.

34
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5.3.5 Other Galois Field (Conjugacy) Constraints
In general, for {v} «— {V'}
v, € GF(q), V; € GF(q™)

But for arbitrary V € F”,.., in general

q™

v ¢ Fy

which we usually want. (Note similarity to complex S(f) for real s(t).)

35
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Theorem 12 Let V € Fi., n|q"™ — 1. Then

UEFZ’@VJ-CI:V((W)), 17=0,1,...

Proof of =:
For 7 =0,1,...,n—1,

n—1
E w" v,
i=0

n—1 q
(S
i=0
n—1
Z w Yyl
i=0
n—1
Z w' v,
i=0

Vi(as)

,n— 1.

36
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Proof of «:
Suppose

Vi = Via))-
Then,

n—1 n—1
E :wijvg _ E :wijvi
1=0 1=0

Let £ =qj. Then,

n—1 n—1

ik, q _ ik,
E w v = E w' v, 3=0,...,n—1
i=0 i=0

But both sides are F.T.s, and the F.T. is unique. Therefore,

vl =v; = v; € Fy.

i =

37
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5.3.6 Conjugacy Classes modulo n

Let m; = the smallest integer for which:
3¢ = j (modulo)n
Recall that ¢ is relatively prime to n. So the sequence

a, ¢, ¢°,...

must repeat. Therefore, there is a smallest integer m; such that all of

{3, 3¢, 3¢*,-.., jq™ '} (3)

are distinct, while j¢™ = j. We say that (3) is the conjugacy class
containing j, modulo n.

Note: By the previous theorem, if ¢ € Fy then
C;=C;

Jjqts
shall see.

[l =0,1,...,m;. This can be used to design codes as we

38
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5.3.7 Traces and Ildempotents
5.3.7.1 The Trace

Definition 10 The q—ary trace of B € GF(q™) is:

n—1 .
Tr(8) = > B
1=0

B+ B+ 87+

Since (a + b)? = a? + b1,
Tr(B)]* = [Tr(B)] € GF(q)

Note that T'r(/3) is just the sum of the elements in the congugacy

class of 3. Exercise: Prove that all conjugates have the same trace.

39
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5.3.7.2 ldempotents

In the spectral domain, let A, be a conjugacy class and consider a
spectrum for which:

O, ]EAk

W, = |
]-7 ]%Ak

Obviously,

Wi = W)

and the time domain polynomial w(z) € F,|z].

Notice that the jt term of w?(x) is

j
D wiw; ]2
1=1

40
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e So w?(x) is a convolution, and its spectrum is given by T3

o« W2=1;.
Therefore,
w?(x) = w(z)
Eq (4) defines an idempotent.
Definition 11 /f an idempotent w(x) of a cyclic code satisfies
c(x)w(x) = c(x) mod(z"™ — 1)

w(x) is called a principal idempotent of the code.

41
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5.3.7.3 Further Results on ldempotents

Construction:

o Let {A;}, i € I be a set of conjugacy classes.

o Llet W; =01if y € A, for all : € I, and zero elsewhere.

e Then w(z) = F~1{W} is an idempotent.

Definition 12 A primitive idempotent is one constructed from a
single conjugacy class. In general an idempotent can be generated as
the sum of a set of primitive idempotents. []
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Theorem 13 Every cyclic code has a unique principal idempotent.

Proof:

—0
£0

This defines a conjugacy class, so w(x) is an idempotent. Now,
(

g(w) =0=ww!) =
Therefore w(x) € the code. Also, from the construction above,

W;G; = G;

43
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5.3.3 Spectral Representations of Cycic Codes

Time domain polynomial codeword representation:

a(x)g(x) € Fglx]

k—1
Cj = Z Qig((j-1))
i=0

which is the j!* term of a cyclic convolution:
c=axg
Therefore, the spectrum is:
C; = A;G;.

If A;,G,; € GF(q) and C; € GF(q™), then C defined by (5) is a
codeword.

()

44
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Given an index set, J = {j1,...,jr}, and let

C={ceF!:C;=0,VjeJ}

Note: This defines a cyclic code.
e By Theorem 9, o/ =0 & C; = 0.

e Therefore, the set J of frequencies corresponds to the defining
set A=0a’, j€J.

e So an alternate definition for a cyclic code is:

C={FYHoX)}:C;,=0,VjeJ}

45
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5.3.8 Spectral Specification of BCH Codes
5.3.8.1 Introduction

Suppose we have a vector v € Fy' where n|q¢™ — 1 such that,

’LUH(V) < d-1

0 = Cj:Cj_H:"': J+2t—1

for some 0 < 5 < n — 1. Can such a vector exist?

Only if it is the all zero vector...

46
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Theorem 14 Let ¢ — 1 = nx. Then the only vector in ¥} of weight
(d — 1) or less having (d — 1) consecutive spectral zeros is O.

Proof:
e Given wy(v) < (d—1).
e Recall that the linear complexity of V.= wg (v).

e Therefore, we write the recursion,

d—1

Vi=> AVi-n).
=0

But if (d — 1) consecutive spectral components are zero, this recursion
guarantees that all subsequent components will be zero. []

47
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Note that the foregoing theorem gives an alternate definition of the
BCH bound.

Definition 13 A BCH code is a code over GF'(q) that satisfies the
BCH bound. In general,

C; € GF(q™)
¢; € GF(q)

48
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Generating BCH Codes
Properties of BCH codes:
e General: C; € GF(q™), ¢; € GF(q).
e Special case (RS): Cj, ¢; € GF(q).
So,
e Specify 2t consecutive spectral zeros.

e BCH bound requires that any nonzero word must have weight
> 2t + 1.

e Therefore d,,,;,, > 2t + 1 =

e d is called the “design distance” of the code.

49
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Spectral Domain Specification of BCH Codes
e Select 2t consecutive spectral zeros.

e By Theorem 12, other components are constrained and not freely
chosen; i.e., given C,

Cg))
Cg2))

C(jgmi—1))

where

— A; =14,79q,...,75q9™ 1}, the conjugacy class containing j

— m; = smallest integer such that j¢"7 = j.

50
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Therefore,

and,

Therefore we can select for C; only those 5 € GF(q™) such that

e ord{} | q™ —1, or
e 3=0.

51



(©2003, A. Brinton Cooper III

5.3.8.2 BCH Encoding

Encoding = select a value for each of the ¢ — 1 positions in the

word or in its Fourier Transform.

Procedure:

e Divide the ¢ — 1 integers into conjugacy classes. (Why?)

e Set 2t consecutive frequencies to zero.

e The first element of each remaining conjugacy class is freely

assignable. The others...?

52
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5.3.8.3 Example

3-error correcting BCH code over GF(29).

Cr=0,=03=04=0C5 =Cg=0.

Each of these is in a conjugacy clas of size 6, so requires 6 bits to
specify.

The remaining components that can be independently specified
are Co, C7,C9,C11,C12,C15,C21,Caz, Ca7, C31. All belong to
GF(2°).

53
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However:
[Ag| =3

Therefore,
Cs = Cy (see above result).

Similarly,

3
|As7| =3, = 0227 = Cyy

Therefore Cy, Co7 € GF(23). Also,

|A21‘ = 2 = (9 EGF(ZQ)
4] = 1 = CyeGF(2)

All others € GF(2°) but in no subfield thereof.

54
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Hence, to specify each:

1 bit

3 bits
2 bits
3 bits

Total 9 bits

and the remaining C7, C11, C43, Cy5,Cas, (31 require 6 bits each to
specify. Hence, we can freely choose 6 x 6 + 9 = 45 bits of the
codeword, producing a (63,45,t = 3) BCH code.

55



