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5.0 Reed-Solomon Codes and their Relatives

5.1 Summary of the “Conventional” Model of RS Codes

5.1.1 History

• First general family of algebraic codes defined by structure.

• A. Hocquenghem (1959), “Codes correcteur d’erreurs;”

• Bose and Ray-Chaudhuri (1960), “Error Correcting Binary Group

Codes;”

• I.S. Reed and G. Solomon, ”Polynomial codes over certain finite

fields,” Siam J. Ind. and App. Math, v8, pp 300-304, 1960.

• Decoders developed by Peterson, Zierler, Berlekamp, Massey,

Cooper, Retter, Sudan, others.



c©2003, A. Brinton Cooper III 2

5.1.2 Definition

Definition 1 A Reed-Solomon Code is a cyclic code generated by

g(x) = (x− α)(x− α2) · · · (x− α2t)

where α is primitive in GF(qm). ¤
Therefore,

• length = qm − 1

• dmin = 2t + 1 (will prove using Fourier transforms)

• n− k = 2t ⇒ RS codes meet the Singleton Bound

Definition 2 Any LBC which meets the Singleton Bound is called

Maximum Distance Separable (MDS). ¤
Corollary: RS codes are MDS. ¤
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5.1.3 Encoding

1. Jointly select size qm of symbol field and block length n = qm− 1.

2. Choose error correction capability t.

3. Find a primitive element α in GF (qm).

4. Form the generator polynomial:

g(x) = (x− α) · (x− α2) · · · (x− α2t)
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Example:

• n = 15

• Symbol field of size 16

• Double error correction (t = 2)

g(x) = (x− α) · (x− α2)(x− α3)(x− α4)

= x4 + α13x3 + α6x2 + α3x + α10

• (15,11) RS code over GF(16), dmin = 5.
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5.1.4 Duals of RS Codes

Theorem 1 Dual of RS code is an (n, n− k) RS code with

dmin = k + 1. ¤

Theorem 2 The dual of an MDS code is MDS.

Proof: Count the (remaining)roots. ¤

Dual of previous ex: (15,4) over GF(16), dmin = 12.
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5.1.5 Information sets

Definition 3 In a linear block code, an information set is a set of k

codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem 3 Any set of k codeword coordinates of an MDS code is an

information set. ¤
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5.1.6 Modified MDS and RS codes

5.1.6.1 Punctured

Theorem 4 A punctured (n, k) MDS code is an (n− 1, k) MDS code.

Proof: Puncturing does not change information sets. ¤
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5.1.6.2 Shortened

Theorem 5 A shortened MDS code is MDS.

Proof:

• To shorten, k → k − 1;

• then n → n− 1.

• But remaining information sets are not changed.

• (n− 1)− (k − 1) = 2t. ¤
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5.1.6.3 Extended

Theorem 6 A narrow sense (q − 1, k) RS code can be extended, by

adding a parity check, to form a noncyclic (q, k, d) MDS code.

Comments:

• n → n + 1, k unchanged.

• Now, any position contains a parity check on the other n.

• Any k positions remain independent
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5.1.6.4 Doubly-extended

Theorem 7 Any narrow-sense, singly-extended (n + 1, k) RS code can

be (further) extended to form a noncyclic (n + 2, k) q−ary MDS code

by adding the symbol cn+1 to each code word, such that:

cn+1 = −
n−1∑

j=0

c + jαjδ

where δ = the BCH bound of the original BCH code.

Proof:

See text, pp 171-172. ¤
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5.2 Summary of the “Conventional Model” of BCH Codes

5.2.1 Definition

• t, t0, m, n integers;

• p prime;

• q = pm;

• α of order n in GF (qm).
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Definition 4 For any t > 0 and any t0, a BCH code is the cyclic code

with blocklength n and generator polynomial

g(x) = LCM{mt0(x),mt0+1(x), . . . , mt0+2t−1(x)}
¤

where mt0(x) is the minimal polynomial of αt0 ∈ GF (qm).

Definition 5 A primitive BCH code is a BCH code for which α is

primitive in GF (qm). ¤
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5.2.2 Generating BCH codes

5.2.2.1 BCH bound and the generator polynomial

Theorem 8 If the roots of every codeword c(x) ∈ C include

α, α2, · · · , α2t, then the minimum distance of C is bounded from

below by 2t + 1:

dmin ≥ dBCH = 2t + 1

We call dBCH

• BCH (lower) bound on dmin, or

• the design distance of the code.
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5.2.2.2 To Design a BCH Code

Parameters:

• Select n and dmin.

• Determine k by designing the code.

• If k is not satisfactory, REPEAT. ELSE,

1. Find α, an nth root of unity in some extension field. (If α is

primitive, then so is code.)

2. Select j0.

3. Write

g(x) = lcm(m1(x),m2(x), · · ·m2t(x))

4. Determine G from g(x) if necessary.
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5.2.2.3 Example

Requirement: a 2-error correcting binary code with n = 15.

Solution: Use a BCH code with 2t = 4 and dBCH = 5.

• Let α be a 15th root of unity; take j0 = 0.

– The smallest field containing an element of order 15 is

GF (16) = GF (24).

– Hence, α is primitive in GF (24).

• Let α be a root of g(x), then so are α2, α4, α8.

• Also need α3 to have 4 consecutive powers.

• So, g(x) = lcm[m1(x),m2(x),m3(x),m4(x)]

• But m1(X) = m2(x) = m4(x) by conjugacy.

• Therefore g(x) = lcm[m1(x),m3(x)] = m1(x) ·m3(x).

• Exponents of roots of g(x) are {1, 2, 3, 4, 6, 8, 9, 12}.



c©2003, A. Brinton Cooper III 16

For example,

m1(x) = p(x) = 1 + x + x4

m3(x) = (x− α3)(x− α6)(x− α12)(x− α9)

= 1 + x + x2 + x3 + x4

g(x) = (1 + x + x4)(1 + x + x2 + x3 + x4)

= 1 + x4 + x5 + x6 + x7 + x8

deg[g(x)] = n− k = 8

k = 7.

So, the code is a (15, 7) code with dmin ≥ 5.

Since wH(g(x)) = 5, dmin = 5.
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5.3 Codes based on the Fourier Transform

5.3.1 Fourier Transforms in Finite Fields

1. Recall Fourier transform:

• v = (v0, v1, . . . , vn−1): real or complex.

• V = (V0, V1, . . . , Vn−1): the discrete Fourier transform of v,

where

Vk =
n−1∑

i=0

ej2πik/nvi, k = 0, . . . , n− 1.

• ej2π/n is a complex nth root of unity.
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2. The Finite Field Fourier Transform (FFFT or GFFT)

• Let ord(α) = n in GF (q).

• Let v ∈ GF (q)n.

Definition 6 The Finite Field Fourier Transform of v is

V = (V0, V1, . . . , Vn−1), where

Vj =
n−1∑

i=0

αijvi.

Then v and V are a Fourier transform pair,

v ↔ V.

• V has length n because αn = 1.

• Vj ∈ GF (q), j = 0, 1, . . . , n− 1.
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• DFT exists for every n for real and complex numbers.

• FT exists for GF (q) only if n|(q − 1). (Why?)

Now, let

n|qm − 1 for some m.

Then there exists element ω of order n in GF (qm) and

Vj =
n−1∑

i=0

ωijvj , V ∈ GF (qm)n.

So, in general,

v ∈ GF (q)n

V = F{v}
V ∈ GF (qm)n
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Note:

• Say v is time domain signal. Then i is a discrete time variable.

• Say V is spectrum of v or is the frequency domain representation,

and j is the “frequency.”

• Any factor of qm − 1 can be a blocklength of F{·}.
• Most interesting is the primitive blocklength, n = qm − 1.

• It is easier to decode in the frequency domain (analog to linear

systems?).
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5.3.2 Properties of the FFFT

Hereafter, let {vi} ↔ {Vj} be a Fourier transform pair.

1. Additivity: {λvi + µwi} ↔ {λVj + µWj} are a Fourier transform

pair.

Proof:

F{λvi + µwi} =
∑

αij(λvi + µwi)

= λ
∑

αijvi + µ
∑

αijwj

= λVj + µWj

¤
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2. Modulation {viα
il} ↔ {V((j+l))} are a Fourier transform pair.

Proof: ∑

i

αijviα
il =

∑

i

αi(j+l)vi = Vj+l

¤
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3. Inverses Over GF (q),

vi =
1
n

n−1∑

j=0

αijVj , j = 0, 1, . . . , n− 1.

Proof: In the Fourier transform, multiply, sum, and re-order.

n−1∑

j=0

α−ijVj =
n−1∑

j=0

α−ij
n−1∑

k=0

αkjvk

=
n−1∑

k=0

vk

n−1∑

j=0

α−ijαkj

=
n−1∑

k=0

vk

n−1∑

j=0

α(k−i)j

But qm − 1 = pM − 1 = nb. Therefore, p does not divide n.
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Since αn = 1 and

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x + 1), (1)

αrn is a root of (1) and

n−1∑

i=1

αir = 0

if r 6= 0 mod n and

n−1∑

i=1

αir = n =
∑

α(k−i)j

if r ≡ 0 mod n. ¤
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4. Convolution Suppose ei = figi, i = 0, . . . , n− 1. Then, Ej is

the cyclic convolution of Fj and Gj .

Proof:

Ej =
n−1∑

i=0

αijfigi

=
1
n

n−1∑

i=0

αijfi

n−1∑

k=0

α−kiGk

=
1
n

n−1∑

k=0

Gk

(
n−1∑

i=0

αijα−kifi

)

=
1
n

n−1∑

k=0

GkF((j−k))

where ((·)) ⇔ mod n. This is the formula for cyclic convolution.
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Exercise: Show that if Ei = FiGi then

ej =
1
n

n−1∑

i=1

fig((j−i)).

5. Translation

{v((i−l))} ↔ {Vjα
lj}

{αivi} ↔ {V((j+1))}
{v((l−1))} ↔ {Vjα

j}

Proof: Exercise.
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6. Notation

v(x) = vn−1x
n−1 + · · ·+ v1x + v0

V (x) = Vn−1x
n−1 + · · ·+ V1x + V0

where

{v} ↔ {V }
as before.

Theorem 9 (a) v(αj) = 0 ⇔ Vj = 0.

(b) V (α−j) = 0 ⇔ vj = 0.

Proof: By direct substitution and observation. ¤
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7. Decimation

• c = (c0, c1, . . . , cn−1).

• Choose b relatively prime to n.

• Let P : i → bi ( mod n) define a permutation c′ of c.

c′ 4= c((bi))

P is a cyclic decimation, choosing every bth component of c in a

cyclic fashion.



c©2003, A. Brinton Cooper III 29

Theorem 10 Let GCD(b, n) = 1, bB ≡ 1 mod n. Then,

{c′} ↔ {C′} where

C ′j = C((Bj))

Proof:

GCD(b, n) = 1 ⇔ bB + nN = 1.

So, by definition,

C ′j =
∑

αijc′i

=
∑

α(bB+nN)ijc((bi))

=
∑

αbBijc((bi))

=
∑

αi′Bjci′

= CBj

where the last step is by the translation property. ¤
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8. Linear Complexity The Linear Recursion:

Vk = −
L∑

j=1

AjVk−j , k = L + 1, . . .

is characterized by A = (A1, . . . , AL) and by length L.

Definition 7 {A, L} is an Autoregressive Filter that satisfies the

recursion. ¤
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Definition 8 The length of the shortest linear recursion that

generates a sequence V0, V1, . . . , Vn−1 is called the linear complexity

of V = (V0, V1, . . . Vn−1).

Note: Recursion V can be considered as the Fourier transform of an

n-tuple. ¤
Theorem 11 The linear complexity of a vector V of finite length

(cyclically extended?) equals the Hamming weight of its Fourier

transform.
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Proof:

For v = (v0, . . . , vn−1), let vj 6= 0, j ∈ {i1, i2, . . . , id}. Consider

A(x) =
d∏

l=1

(1− xαil) =
d∑

k=0

Akxk.

Let a(x) be the inverse Fourier transform of A(x). Then,

ai =
1
n

n−1∑

k=0

α−ikAk =
1
n

A(α−i)

=
1
n

d∏

l=1

(1− α−iαi)

Or ai = 0 ⇔ i ∈ {i1, . . . , id}. Therefore, ai = 0 ⇔ vi 6= 0, ∀i, and

aivi = 0

¤
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5.3.4 RS Codes by Fourier Transforms

We require:

• Symbols from GF (q) and n|q − 1.

• Time domain and spectral components from GF (q).

Definition 9 A Reed-Solomon Code of length n is one for which

Cj = 0, j ∈ {j0, j0 + 1, j0 + 2, . . . , j0 + 2t− 1}.

¤
From a previous theorem:

c(ωj) = 0 ⇔ Cj = 0, where ωn = 1.

Therefore, if j0 = 1,

g(x) = (x− ω)(x− ω2) · · · (x− ω2t). (2)
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Taking the inverse transform produces a non-systematic code:

c(x) = F−1{C} =
1
n

n−1∑

i=0

ω−ijVi

If the order of ω is q − 1 then ω is primitive and n = q − 1.

Therefore, for a code satisfying (2), BCH bound requires:

dmin ≥ 2t + 1 = n− k + 1

But by Singleton bound:

dmin ≤ 2t + 1 = n− k + 1

Therefore, for the RS codes:

dmin = 2t + 1 = n− k + 1

and, for fixed (n, k) no code can have larger dmin.
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5.3.5 Other Galois Field (Conjugacy) Constraints

In general, for {v} ↔ {V }

vi ∈ GF (q), Vj ∈ GF (qm)

But for arbitrary V ∈ Fn
qm , in general

v /∈ Fn
q

which we usually want. (Note similarity to complex S(f) for real s(t).)
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Theorem 12 Let V ∈ Fn
qm , n|qm − 1. Then

v ∈ Fn
q ⇔ V q

j = V((qj)), j = 0, 1, . . . , n− 1.

Proof of ⇒:
For j = 0, 1, . . . , n− 1,

Vj =
n−1∑

i=0

ωijvi

V q
j =

(
n−1∑

i=0

ωijvi

)q

=
n−1∑

i=0

ωiqjvq
i

=
n−1∑

i=0

ωiqjvj

= V((qj))
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Proof of ⇐:

Suppose

V q
j = V((jq)).

Then,
n−1∑

i=0

ωiqjvq
i =

n−1∑

i=0

ωiqjvi

Let k = qj. Then,

n−1∑

i=0

ωikvq
i =

n−1∑

i=0

ωikvi j = 0, . . . , n− 1

But both sides are F.T.s, and the F.T. is unique. Therefore,

vq
i = vi ⇒ vi ∈ Fq.

¤
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5.3.6 Conjugacy Classes modulo n

Let mj = the smallest integer for which:

jqmj = j (modulo)n

Recall that q is relatively prime to n. So the sequence

q, q2, q3, . . .

must repeat. Therefore, there is a smallest integer mj such that all of

{j, jq, jq2, . . . , jqmj−1} (3)

are distinct, while jqmj = j. We say that (3) is the conjugacy class

containing j, modulo n.

Note: By the previous theorem, if c ∈ Fn
q then

Cj = Cjql , l = 0, 1, . . . , mj . This can be used to design codes as we

shall see.
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5.3.7 Traces and Idempotents

5.3.7.1 The Trace

Definition 10 The q−ary trace of β ∈ GF (qm) is:

Tr(β) 4=
n−1∑

i=0

βqi

= β + βq + βq2
+ · · ·

Since (a + b)q = aq + bq,

[Tr(β)]q = [Tr(β)] ∈ GF (q)

Note that Tr(β) is just the sum of the elements in the congugacy

class of β. Exercise: Prove that all conjugates have the same trace.
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5.3.7.2 Idempotents

In the spectral domain, let Ak be a conjugacy class and consider a

spectrum for which:

Wj =





0, j ∈ Ak

1, j /∈ Ak

Obviously,

W q
j = W((jq))

and the time domain polynomial w(x) ∈ Fq[x].

Notice that the jth term of w2(x) is

[
j∑

i=1

wiwj−i]xj
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• So w2(x) is a convolution, and its spectrum is given by W 2
j .

• W 2
j = Wj .

Therefore,

w2(x) = w(x) (4)

Eq (4) defines an idempotent.

Definition 11 If an idempotent w(x) of a cyclic code satisfies

c(x)w(x) = c(x) mod(xn − 1)

w(x) is called a principal idempotent of the code.
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5.3.7.3 Further Results on Idempotents

Construction:

• Let {Ai}, i ∈ I be a set of conjugacy classes.

• Let Wi = 0 if j ∈ Ai for all i ∈ I, and zero elsewhere.

• Then w(x) = F−1{W} is an idempotent.

Definition 12 A primitive idempotent is one constructed from a

single conjugacy class. In general an idempotent can be generated as

the sum of a set of primitive idempotents. ¤
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Theorem 13 Every cyclic code has a unique principal idempotent.

Proof:

Wj =





0, g(ωj) = 0

1, g(ωj) 6= 0

This defines a conjugacy class, so w(x) is an idempotent. Now,

g(ωj) = 0 ⇒ w(ωj) = 0.

Therefore w(x) ∈ the code. Also, from the construction above,

WjGj = Gj

so that w(x)g(x) = g(x). Finally,

c(x) ∈ C ⇒ c(x) = a(x)g(x)

c(x)w(x) = a(x)w(x)g(x) = a(x)g(x) = c(x) mod(xn − 1).

¤



c©2003, A. Brinton Cooper III 44

5.3.3 Spectral Representations of Cycic Codes

Time domain polynomial codeword representation:

c(x) = a(x)g(x) ∈ Fq[x]

Then

cj =
k−1∑

i=0

aig((j−i))

which is the jth term of a cyclic convolution:

c = a ∗ g

Therefore, the spectrum is:

Cj = AjGj . (5)

If Aj , Gj ∈ GF (q) and Cj ∈ GF (qm), then C defined by (5) is a

codeword.
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Given an index set, J = {j1, . . . , jr}, and let

C 4= {c ∈ Fn
q : Cj = 0, ∀j ∈ J }

Note: This defines a cyclic code.

• By Theorem 9, αj = 0 ⇔ Cj = 0.

• Therefore, the set J of frequencies corresponds to the defining

set A = αj , j ∈ J .

• So an alternate definition for a cyclic code is:

C = {F−1{C(X)} : Cj = 0, ∀j ∈ J}
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5.3.8 Spectral Specification of BCH Codes

5.3.8.1 Introduction

Suppose we have a vector v ∈ Fn
q where n|qm − 1 such that,

wH(v) ≤ d− 1

0 = Cj = Cj+1 = · · · = Cj+2t−1

for some 0 ≤ j ≤ n− 1. Can such a vector exist?

Only if it is the all zero vector...
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Theorem 14 Let qm − 1 = nx. Then the only vector in Fn
q of weight

(d− 1) or less having (d− 1) consecutive spectral zeros is 0.

Proof:

• Given wH(v) ≤ (d− 1).

• Recall that the linear complexity of V = wH(v).

• Therefore, we write the recursion,

Vj =
d−1∑

l=0

AlV((j−l)).

But if (d− 1) consecutive spectral components are zero, this recursion

guarantees that all subsequent components will be zero. ¤
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Note that the foregoing theorem gives an alternate definition of the

BCH bound.

Definition 13 A BCH code is a code over GF (q) that satisfies the

BCH bound. In general,

Cj ∈ GF (qm)

cj ∈ GF (q)

¤
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Generating BCH Codes

Properties of BCH codes:

• General: Cj ∈ GF (qm), cj ∈ GF (q).

• Special case (RS): Cj , cj ∈ GF (q).

So,

• Specify 2t consecutive spectral zeros.

• BCH bound requires that any nonzero word must have weight

≥ 2t + 1.

• Therefore dmin ≥ 2t + 1 4= d.

• d is called the “design distance” of the code.
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Spectral Domain Specification of BCH Codes

• Select 2t consecutive spectral zeros.

• By Theorem 12, other components are constrained and not freely

chosen; i.e., given Cj ,

C((jq)) = Cq
j

C((jq2)) = Cq2

j

...

C((jqmj−1)) = Cqmj−1
j

where

– Aj = {j, jq, . . . , jqmj−1}, the conjugacy class containing j

– mj = smallest integer such that jqmj = j.
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Therefore,

Cqmj

j = C((jqmj )) = Cj

and,

Cqmj−1
j = 1

Therefore we can select for Cj only those β ∈ GF (qm) such that

• ord{β} | qmj − 1, or

• β = 0.
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5.3.8.2 BCH Encoding

Encoding ⇒ select a value for each of the qm − 1 positions in the

word or in its Fourier Transform.

Procedure:

• Divide the qm − 1 integers into conjugacy classes. (Why?)

• Set 2t consecutive frequencies to zero.

• The first element of each remaining conjugacy class is freely

assignable. The others...?
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5.3.8.3 Example

• 3-error correcting BCH code over GF (26).

• C1 = C2 = C3 = C4 = C5 = C6 = 0.

• Each of these is in a conjugacy clas of size 6, so requires 6 bits to

specify.

• The remaining components that can be independently specified

are C0, C7, C9, C11, C12, C15, C21, C23, C27, C31. All belong to

GF (26).
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However:

|A9| = 3

Therefore,

C3
2 = C9 (see above result).

Similarly,

|A27| = 3, ⇒ C23

27 = C27

Therefore C9, C27 ∈ GF (23). Also,

|A21| = 2 ⇒ C21 ∈ GF (22)

|A0| = 1 ⇒ C0 ∈ GF (2)

All others ∈ GF (26) but in no subfield thereof.
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Hence, to specify each:

C0 1 bit

C9 3 bits

C21 2 bits

C27 3 bits

Total 9 bits

and the remaining C7, C11, C13, C15, C23, C31 require 6 bits each to

specify. Hence, we can freely choose 6× 6 + 9 = 45 bits of the

codeword, producing a (63, 45, t = 3) BCH code.


