5.0 Reed-Solomon Codes and their Relatives 5.1 Summary of the "Conventional" Model of RS Codes 5.1.1 History

- First general **family** of algebraic codes defined by **structure**.
- A. Hocquenghem (1959), "Codes correcteur d'erreurs;"
- Bose and Ray-Chaudhuri (1960), "Error Correcting Binary Group Codes;"
- I.S. Reed and G. Solomon, "Polynomial codes over certain finite fields," *Siam J. Ind. and App. Math*, v8, pp 300-304, 1960.
- Decoders developed by Peterson, Zierler, Berlekamp, Massey, Cooper, Retter, Sudan, others.

5.1.2 Definition

Definition 1 A **Reed-Solomon Code** is a cyclic code generated by

$$g(x) = (x - \alpha)(x - \alpha^2) \cdots (x - \alpha^{2t})$$

where α is primitive in $GF(q^m)$.

Therefore,

- length = $q^m 1$
- $d_{min} = 2t + 1$ (will prove using Fourier transforms)
- $n-k=2t \Rightarrow \mathsf{RS}$ codes meet the Singleton Bound

Definition 2 Any LBC which meets the Singleton Bound is called **Maximum Distance Separable** (MDS).

Corollary: *RS* codes are *MDS*.

5.1.3 Encoding

- 1. Jointly select size q^m of symbol field and block length $n = q^m 1$.
- 2. Choose error correction capability t.
- 3. Find a primitive element α in $GF(q^m)$.
- 4. Form the generator polynomial:

$$g(x) = (x - \alpha) \cdot (x - \alpha^2) \cdots (x - \alpha^{2t})$$

Example:

- n = 15
- Symbol field of size 16
- Double error correction (t = 2)

$$g(x) = (x - \alpha) \cdot (x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$$

$$= x^4 + \alpha^{13}x^3 + \alpha^6x^2 + \alpha^3x + \alpha^{10}$$

• (15,11) RS code over GF(16), $d_{min} = 5$.

5.1.4 Duals of RS Codes

Theorem 1 Dual of RS code is an (n, n - k) RS code with $d_{min} = k + 1$.

Theorem 2 The dual of an MDS code is MDS.

Proof: Count the (remaining)roots.

Dual of previous ex: (15,4) over GF(16), $d_{min} = 12$.

5.1.5 Information sets

Definition 3 In a linear block code, an information set is a set of k codeword coordinates which are linearly independent.

(Thus, any information set carries k information symbols).

Theorem 3 Any set of k codeword coordinates of an MDS code is an information set.

5.1.6 Modified MDS and RS codes

5.1.6.1 Punctured

Theorem 4 A punctured (n,k) MDS code is an (n-1,k) MDS code.

Proof: Puncturing does not change information sets.

5.1.6.2 Shortened

Theorem 5 A shortened MDS code is MDS.

Proof:

- To shorten, $k \rightarrow k-1$;
- then $n \rightarrow n-1$.
- But remaining information sets are not changed.

•
$$(n-1) - (k-1) = 2t$$
.

5.1.6.3 Extended

Theorem 6 A narrow sense (q - 1, k) RS code can be extended, by adding a parity check, to form a noncyclic (q, k, d) MDS code.

Comments:

- $n \rightarrow n+1$, k unchanged.
- Now, any position contains a parity check on the other n.
- Any k positions remain independent

5.1.6.4 Doubly-extended

Theorem 7 Any narrow-sense, singly-extended (n + 1, k) RS code can be (further) extended to form a noncyclic (n + 2, k) q-ary MDS code by adding the symbol c_{n+1} to each code word, such that:

$$c_{n+1} = -\sum_{j=0}^{n-1} c + j\alpha^{j\delta}$$

where $\delta =$ the BCH bound of the original BCH code.

Proof:

See text, pp 171-172.

5.2 Summary of the "Conventional Model" of BCH Codes 5.2.1 Definition

- t, t_0, m, n integers;
- p prime;
- $q = p^m$;
- α of order n in $GF(q^m)$.

Definition 4 For any t > 0 and any t_0 , a BCH code is the cyclic code with blocklength n and generator polynomial

$$g(x) = LCM\{m_{t_0}(x), m_{t_0+1}(x), \dots, m_{t_0+2t-1}(x)\}$$

where $m_{t_0}(x)$ is the minimal polynomial of $\alpha^{t_0} \in GF(q^m)$.

Definition 5 A primitive BCH code is a BCH code for which α is primitive in $GF(q^m)$.

5.2.2 Generating BCH codes 5.2.2.1 BCH bound and the generator polynomial

Theorem 8 If the roots of every codeword $c(x) \in C$ include $\alpha, \alpha^2, \dots, \alpha^{2t}$, then the minimum distance of C is bounded from below by 2t + 1:

$$d_{min} \ge d_{BCH} = 2t + 1$$

We call d_{BCH}

- BCH (lower) bound on d_{min} , or
- the *design distance* of the code.

5.2.2.2 To Design a BCH Code

Parameters:

- Select n and d_{min} .
- Determine k by designing the code.
- If k is not satisfactory, REPEAT. ELSE,
 - 1. Find α , an n^{th} root of unity in some extension field. (If α is primitive, then so is code.)
 - 2. Select j_0 .
 - 3. Write

$$g(x) = lcm(m_1(x), m_2(x), \cdots m_{2t}(x))$$

4. Determine G from g(x) if necessary.

5.2.2.3 Example

Requirement: a 2-error correcting binary code with n = 15. **Solution:** Use a BCH code with 2t = 4 and $d_{BCH} = 5$.

- Let α be a 15^{th} root of unity; take $j_0 = 0$.
 - The smallest field containing an element of order 15 is $GF(16) = GF(2^4).$

– Hence, α is *primitive* in $GF(2^4)$.

- Let α be a root of g(x), then so are $\alpha^2, \alpha^4, \alpha^8$.
- Also need α^3 to have 4 consecutive powers.
- So, $g(x) = lcm[m_1(x), m_2(x), m_3(x), m_4(x)]$
- But $m_1(X) = m_2(x) = m_4(x)$ by conjugacy.
- Therefore $g(x) = lcm[m_1(x), m_3(x)] = m_1(x) \cdot m_3(x)$.
- Exponents of roots of g(x) are $\{1, 2, 3, 4, 6, 8, 9, 12\}$.

For example,

$$m_{1}(x) = p(x) = 1 + x + x^{4}$$

$$m_{3}(x) = (x - \alpha^{3})(x - \alpha^{6})(x - \alpha^{12})(x - \alpha^{9})$$

$$= 1 + x + x^{2} + x^{3} + x^{4}$$

$$g(x) = (1 + x + x^{4})(1 + x + x^{2} + x^{3} + x^{4})$$

$$= 1 + x^{4} + x^{5} + x^{6} + x^{7} + x^{8}$$

$$deg[g(x)] = n - k = 8$$

$$k = 7.$$

So, the code is a (15, 7) code with $d_{min} \ge 5$. Since $w_H(g(x)) = 5$, $d_{min} = 5$.

5.3 Codes based on the Fourier Transform 5.3.1 Fourier Transforms in Finite Fields

- 1. Recall Fourier transform:
 - $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$: real or complex.
 - $\mathbf{V} = (V_0, V_1, \dots, V_{n-1})$: the discrete Fourier transform of \mathbf{v} , where

$$V_k = \sum_{i=0}^{n-1} e^{j2\pi i k/n} v_i, \ k = 0, \dots, n-1.$$

•
$$e^{j2\pi/n}$$
 is a complex n^{th} root of unity.

2. The Finite Field Fourier Transform (FFFT or GFFT)

• Let
$$ord(\alpha) = n$$
 in $GF(q)$.

• Let $\mathbf{v} \in GF(q)^n$.

Definition 6 The Finite Field Fourier Transform of \mathbf{v} is $\mathbf{V} = (V_0, V_1, \dots, V_{n-1})$, where

$$V_j = \sum_{i=0}^{n-1} \alpha^{ij} v_i$$

Then ${\bf v}$ and ${\bf V}$ are a Fourier transform pair,

$$\mathbf{v} \leftrightarrow \mathbf{V}$$

• V has length n because $\alpha^n = 1$.

•
$$V_j \in GF(q), \ j = 0, 1, \dots, n-1.$$

- DFT exists for every n for real and complex numbers.
- FT exists for GF(q) only if n|(q-1). (Why?)

Now, let

$$n|q^m-1$$
 for some m .

Then there exists element ω of order n in $GF(q^m)$ and

$$V_j = \sum_{i=0}^{n-1} \omega^{ij} v_j, \ \mathbf{V} \in GF(q^m)^n.$$

So, in general,

 $\mathbf{v} \in GF(q)^n$ $\mathbf{V} = \mathcal{F}\{\mathbf{v}\}$ $\mathbf{V} \in GF(q^m)^n$

Note:

- Say \mathbf{v} is *time domain* signal. Then i is a discrete time variable.
- Say V is *spectrum* of v or is the *frequency domain* representation, and j is the "frequency."
- Any factor of $q^m 1$ can be a blocklength of $\mathcal{F}\{\cdot\}$.
- Most interesting is the **primitive** blocklength, $n = q^m 1$.
- It is easier to decode in the frequency domain (analog to linear systems?).

5.3.2 Properties of the FFFT

Hereafter, let $\{v_i\} \leftrightarrow \{V_j\}$ be a Fourier transform pair.

1. Additivity: $\{\lambda v_i + \mu w_i\} \leftrightarrow \{\lambda V_j + \mu W_j\}$ are a Fourier transform pair. Proof:

$$\mathcal{F}\{\lambda v_i + \mu w_i\} = \sum \alpha^{ij} (\lambda v_i + \mu w_i)$$
$$= \lambda \sum \alpha^{ij} v_i + \mu \sum \alpha^{ij} w_j$$
$$= \lambda V_j + \mu W_j$$

2. Modulation $\{v_i \alpha^{il}\} \leftrightarrow \{V_{((j+l))}\}$ are a Fourier transform pair. Proof:

$$\sum_{i} \alpha^{ij} v_i \alpha^{il} = \sum_{i} \alpha^{i(j+l)} v_i = V_{j+l}$$

3. Inverses Over GF(q),

$$v_i = \frac{1}{n} \sum_{j=0}^{n-1} \alpha^{ij} V_j, \ j = 0, 1, \dots, n-1.$$

Proof: In the Fourier transform, multiply, sum, and re-order.

$$\sum_{j=0}^{n-1} \alpha^{-ij} V_j = \sum_{j=0}^{n-1} \alpha^{-ij} \sum_{k=0}^{n-1} \alpha^{kj} v_k$$
$$= \sum_{k=0}^{n-1} v_k \sum_{j=0}^{n-1} \alpha^{-ij} \alpha^{kj}$$
$$= \sum_{k=0}^{n-1} v_k \sum_{j=0}^{n-1} \alpha^{(k-i)j}$$

But $q^m - 1 = p^M - 1 = nb$. Therefore, p does not divide n.

Since
$$\alpha^n = 1$$
 and
 $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1),$ (1)
 α^{rn} is a root of (1) and
 $\sum_{i=1}^{n-1} \alpha^{ir} = 0$
if $r \neq 0 \mod n$ and
 $\sum_{i=1}^{n-1} \alpha^{ir} = n = \sum \alpha^{(k-i)j}$
if $r \equiv 0 \mod n.$

4. Convolution Suppose $e_i = f_i g_i$, i = 0, ..., n - 1. Then, E_j is the cyclic convolution of F_j and G_j . *Proof:*

$$E_{j} = \sum_{i=0}^{n-1} \alpha^{ij} f_{i} g_{i}$$

= $\frac{1}{n} \sum_{i=0}^{n-1} \alpha^{ij} f_{i} \sum_{k=0}^{n-1} \alpha^{-ki} G_{k}$
= $\frac{1}{n} \sum_{k=0}^{n-1} G_{k} \left(\sum_{i=0}^{n-1} \alpha^{ij} \alpha^{-ki} f_{i} \right)$
= $\frac{1}{n} \sum_{k=0}^{n-1} G_{k} F_{((j-k))}$

where $((\cdot)) \Leftrightarrow mod n$. This is the formula for cyclic convolution.

Exercise: Show that if $E_i = F_i G_i$ then

$$e_j = \frac{1}{n} \sum_{i=1}^{n-1} f_i g_{((j-i))}.$$

5. Translation

$$\{v_{((i-l))}\} \quad \leftrightarrow \quad \{V_j \alpha^{lj}\} \\ \{\alpha^i v_i\} \quad \leftrightarrow \quad \{V_{((j+1))}\} \\ \{v_{((l-1))}\} \quad \leftrightarrow \quad \{V_j \alpha^j\}$$

Proof: Exercise.

6. Notation

$$v(x) = v_{n-1}x^{n-1} + \dots + v_1x + v_0$$

$$V(x) = V_{n-1}x^{n-1} + \dots + V_1x + V_0$$

where

$$\{v\} \leftrightarrow \{V\}$$

as before.

Theorem 9 (a) $v(\alpha^j) = 0 \Leftrightarrow V_j = 0$. (b) $V(\alpha^{-j}) = 0 \Leftrightarrow v_j = 0$.

Proof: By direct substitution and observation.

7. Decimation

•
$$\mathbf{c} = (c_0, c_1, \dots, c_{n-1}).$$

- Choose *b* relatively prime to *n*.
- Let $P: i \to bi \pmod{n}$ define a permutation \mathbf{c}' of \mathbf{c} .

$$\mathbf{c}' \stackrel{\scriptscriptstyle riangle}{=} \mathbf{c}_{((bi))}$$

P is a **cyclic decimation**, choosing every b^{th} component of **c** in a cyclic fashion.

Theorem 10 Let $GCD(b, n) = 1, bB \equiv 1 \mod n$. Then, $\{c'\} \leftrightarrow \{C'\}$ where

$$C_j' = C_{((Bj))}$$

Proof:

$$GCD(b,n) = 1 \Leftrightarrow bB + nN = 1.$$

So, by definition,

$$C'_{j} = \sum \alpha^{ij} c'_{i}$$

$$= \sum \alpha^{(bB+nN)ij} c_{((bi))}$$

$$= \sum \alpha^{bBij} c_{((bi))}$$

$$= \sum \alpha^{i'Bj} c_{i'}$$

$$= C_{Bj}$$

where the last step is by the translation property.

8. Linear Complexity The Linear Recursion:

$$V_k = -\sum_{j=1}^{L} A_j V_{k-j}, \ k = L+1, \dots$$

is characterized by $\mathbf{A} = (A_1, \ldots, A_L)$ and by length L.

Definition 7 $\{A, L\}$ is an **Autoregressive Filter** that satisfies the recursion.

Definition 8 The length of the shortest linear recursion that generates a sequence $V_0, V_1, \ldots, V_{n-1}$ is called the **linear complexity** of $\mathbf{V} = (V_0, V_1, \ldots, V_{n-1})$.

Note: Recursion V can be considered as the Fourier transform of an n-tuple.

Theorem 11 The linear complexity of a vector **V** of finite length (cyclically extended?) equals the Hamming weight of its Fourier transform.

Proof: For $\mathbf{v} = (v_0, \dots, v_{n-1})$, let $v_j \neq 0, j \in \{i_1, i_2, \dots, i_d\}$. Consider $A(x) = \prod^{d} (1 - x\alpha^{i_l}) = \sum^{d} A_k x^k.$ Let a(x) be the inverse Fourier transform of A(x). Then, $a_i = \frac{1}{n} \sum_{k=0}^{n-1} \alpha^{-ik} A_k = \frac{1}{n} A(\alpha^{-i})$ $= \frac{1}{n} \prod_{i=1}^{d} (1 - \alpha^{-i} \alpha^{i})$ Or $a_i = 0 \Leftrightarrow i \in \{i_1, \ldots, i_d\}$. Therefore, $a_i = 0 \Leftrightarrow v_i \neq 0, \forall i$, and $a_i v_i = 0$

5.3.4 RS Codes by Fourier Transforms

We require:

- Symbols from GF(q) and n|q-1.
- Time domain and spectral components from GF(q).

Definition 9 A Reed-Solomon Code of length n is one for which

$$C_j = 0, \ j \in \{j_0, j_0 + 1, j_0 + 2, \dots, j_0 + 2t - 1\}.$$

From a previous theorem:

$$c(\omega^j) = 0 \Leftrightarrow C_j = 0$$
, where $\omega^n = 1$.

Therefore, if $j_0 = 1$,

$$g(x) = (x - \omega)(x - \omega^2) \cdots (x - \omega^{2t}).$$
(2)

Taking the inverse transform produces a *non-systematic code:*

$$c(x) = \mathcal{F}^{-1}\{\mathbf{C}\} = \frac{1}{n} \sum_{i=0}^{n-1} \omega^{-ij} V_i$$

If the order of ω is q-1 then ω is primitive and n = q-1. Therefore, for a code satisfying (2), BCH bound requires:

$$d_{min} \ge 2t + 1 = n - k + 1$$

But by Singleton bound:

$$d_{min} \le 2t + 1 = n - k + 1$$

Therefore, for the RS codes:

$$d_{min} = 2t + 1 = n - k + 1$$

and, for fixed (n,k) no code can have larger d_{min} .

5.3.5 Other Galois Field (Conjugacy) Constraints

In general, for $\{v\} \leftrightarrow \{V\}$

 $v_i \in GF(q), \quad V_j \in GF(q^m)$

But for arbitrary $V \in \mathbf{F}_{q^m}^n$, in general

$$v \notin \mathbf{F}_q^n$$

which we usually want. (Note similarity to complex S(f) for real s(t).)

Theorem 12 Let
$$V \in \mathbf{F}_{q^m}^n$$
, $n|q^m - 1$. Then
 $v \in \mathbf{F}_q^n \Leftrightarrow V_j^q = V_{((qj))}, \ j = 0, 1, \dots, n-1.$
Proof of \Rightarrow :
For $j = 0, 1, \dots, n-1$,
 $V_j = \sum_{i=0}^{n-1} \omega^{ij} v_i$
 $V_j^q = \left(\sum_{i=0}^{n-1} \omega^{ij} v_i\right)^q$
 $= \sum_{i=0}^{n-1} \omega^{iqj} v_i^q$
 $= \sum_{i=0}^{n-1} \omega^{iqj} v_j$
 $= V_{((qj))}$

Proof of \Leftarrow : Suppose

$$V_j^q = V_{((jq))}.$$

Then,

$$\sum_{i=0}^{n-1} \omega^{iqj} v_i^q = \sum_{i=0}^{n-1} \omega^{iqj} v_i$$

Let k = qj. Then,

$$\sum_{i=0}^{n-1} \omega^{ik} v_i^q = \sum_{i=0}^{n-1} \omega^{ik} v_i \ j = 0, \dots, n-1$$

But both sides are F.T.s, and the F.T. is unique. Therefore,

$$v_i^q = v_i \Rightarrow v_i \in \mathbf{F}_q.$$

5.3.6 Conjugacy Classes modulo *n*

Let m_j = the smallest integer for which:

 $jq^{m_j} = j \pmod{n}$

Recall that q is relatively prime to n. So the sequence

 q, q^2, q^3, \dots

must repeat. Therefore, there is a smallest integer m_j such that all of

$$\{j, jq, jq^2, \dots, jq^{m_j-1}\}$$
 (3)

are distinct, while $jq^{m_j} = j$. We say that (3) is the **conjugacy class** containing j, modulo n.

Note: By the previous theorem, if $\mathbf{c} \in \mathbf{F}_q^n$ then $C_j = C_{jq^l}, \ l = 0, 1, \dots, m_j$. This can be used to design codes as we shall see.

5.3.7 Traces and Idempotents 5.3.7.1 The Trace

Definition 10 The q-ary trace of $\beta \in GF(q^m)$ is:

$$Tr(\beta) \stackrel{\triangle}{=} \sum_{i=0}^{n-1} \beta^{q^i}$$
$$= \beta + \beta^q + \beta^{q^2} + \cdots$$

Since $(a+b)^q = a^q + b^q$,

$$[Tr(\beta)]^q = [Tr(\beta)] \in GF(q)$$

Note that $Tr(\beta)$ is just the sum of the elements in the congugacy class of β . **Exercise:** *Prove that all conjugates have the same trace.*

5.3.7.2 Idempotents

In the spectral domain, let A_k be a conjugacy class and consider a spectrum for which:

$$W_j = \begin{cases} 0, & j \in A_k \\ 1, & j \notin A_k \end{cases}$$

Obviously,

$$W_j^q = W_{((jq))}$$

and the time domain polynomial $w(x) \in \mathbf{F}_q[x]$.

Notice that the j^{th} term of $w^2(x)$ is

$$\left[\sum_{i=1}^{j} w_i w_{j-i}\right] x^j$$

• So $w^2(x)$ is a convolution, and its spectrum is given by W_j^2 .

•
$$W_j^2 = W_j$$
.

Therefore,

$$w^2(x) = w(x) \tag{4}$$

Eq (4) defines an **idempotent**.

Definition 11 If an idempotent w(x) of a cyclic code satisfies

 $c(x)w(x) = c(x) \mod(x^n - 1)$

w(x) is called a principal idempotent of the code.

5.3.7.3 Further Results on Idempotents

Construction:

- Let $\{A_i\}, i \in I$ be a set of conjugacy classes.
- Let $W_i = 0$ if $j \in A_i$ for all $i \in I$, and zero elsewhere.
- Then $w(x) = \mathcal{F}^{-1}\{W\}$ is an idempotent.

Definition 12 A primitive idempotent is one constructed from a single conjugacy class. In general an idempotent can be generated as the sum of a set of primitive idempotents.

Theorem 13 Every cyclic code has a unique principal idempotent. Proof:

$$W_j = \begin{cases} 0, \ g(\omega^j) &= 0\\ 1, \ g(\omega^j) &\neq 0 \end{cases}$$

This defines a conjugacy class, so w(x) is an idempotent. Now,

$$g(\omega^j) = 0 \Rightarrow w(\omega^j) = 0.$$

Therefore $w(x) \in$ the code. Also, from the construction above,

$$W_j G_j = G_j$$

so that w(x)g(x) = g(x). Finally,

$$c(x) \in \mathcal{C} \Rightarrow c(x) = a(x)g(x)$$

$$c(x)w(x) = a(x)w(x)g(x) = a(x)g(x) = c(x) \mod(x^n - 1).$$

5.3.3 Spectral Representations of Cycic Codes

Time domain polynomial codeword representation:

$$c(x) = a(x)g(x) \in \mathbf{F}_q[x]$$

Then

$$c_j = \sum_{i=0}^{k-1} a_i g_{((j-i))}$$

which is the j^{th} term of a **cyclic convolution**:

$$\mathbf{c} = \mathbf{a} * \mathbf{g}$$

Therefore, the spectrum is:

$$C_j = A_j G_j. (5)$$

If $A_j, G_j \in GF(q)$ and $C_j \in GF(q^m)$, then C defined by (5) is a codeword.

Given an *index set*, $\mathcal{J} = \{j_1, \ldots, j_r\}$, and let

$$\mathcal{C} \stackrel{\scriptscriptstyle \Delta}{=} \{ \mathbf{c} \in \mathbf{F}_q^n : C_j = 0, \ \forall j \in \mathcal{J} \}$$

Note: This defines a cyclic code.

- By Theorem 9, $\alpha^j = 0 \Leftrightarrow C_j = 0$.
- Therefore, the set \mathcal{J} of frequencies corresponds to the **defining** set $\mathcal{A} = \alpha^j, \ j \in \mathcal{J}$.
- So an alternate definition for a cyclic code is:

$$\mathcal{C} = \{\mathcal{F}^{-1}\{C(X)\} : C_j = 0, \ \forall j \in J\}$$

5.3.8 Spectral Specification of BCH Codes 5.3.8.1 Introduction

Suppose we have a vector $\mathbf{v} \in \mathbf{F}_q^n$ where $n|q^m-1$ such that,

$$w_H(\mathbf{v}) \leq d-1$$

 $0 = C_j = C_{j+1} = \dots = C_{j+2t-1}$

for some $0 \le j \le n-1$. Can such a vector exist?

Only if it is the all zero vector...

Theorem 14 Let $q^m - 1 = nx$. Then the only vector in \mathbf{F}_q^n of weight (d-1) or less having (d-1) consecutive spectral zeros is **0**.

Proof:

- Given $w_H(\mathbf{v}) \leq (d-1)$.
- Recall that the linear complexity of $\mathbf{V} = w_H(\mathbf{v})$.
- Therefore, we write the recursion,

$$V_j = \sum_{l=0}^{d-1} A_l V_{((j-l))}.$$

But if (d-1) consecutive spectral components are zero, this recursion guarantees that all subsequent components will be zero.

Note that the foregoing theorem gives an alternate definition of the **BCH bound**.

Definition 13 A BCH code is a code over GF(q) that satisfies the BCH bound. In general,

 $C_j \in GF(q^m)$ $c_j \in GF(q)$

Generating BCH Codes

Properties of BCH codes:

- General: $C_j \in GF(q^m), c_j \in GF(q).$
- Special case (RS): $C_j, c_j \in GF(q)$.

So,

- Specify 2t consecutive spectral zeros.
- BCH bound requires that any nonzero word must have weight $\geq 2t + 1$.
- Therefore $d_{min} \ge 2t + 1 \stackrel{\scriptscriptstyle \triangle}{=} d$.
- d is called the "design distance" of the code.

Spectral Domain Specification of BCH Codes

- Select 2t consecutive spectral zeros.
- By Theorem 12, other components are constrained and not freely chosen; *i.e.*, given C_j ,

$$C_{((jq))} = C_j^q$$

$$C_{((jq^2))} = C_j^{q^2}$$

$$\vdots$$

$$C_{((jq^{m_j}-1))} = C_j^{q^{m_j}-1}$$

where

- $A_j = \{j, jq, \dots, jq^{m_j-1}\}$, the conjugacy class containing j- m_j = smallest integer such that $jq^{m_j} = j$.

Therefore,

$$C_j^{q^{m_j}} = C_{((jq^{m_j}))} = C_j$$

and,

$$C_j^{q^{m_j}-1} = 1$$

Therefore we can select for C_j only those $\beta \in GF(q^m)$ such that

•
$$ord\{eta\}\mid q^{m_j}-1$$
, or

•
$$\beta = 0.$$

5.3.8.2 BCH Encoding

Encoding \Rightarrow select a value for each of the $q^m - 1$ positions in the word or in its Fourier Transform.

Procedure:

- Divide the $q^m 1$ integers into conjugacy classes. (Why?)
- Set 2t consecutive frequencies to zero.
- The first element of each remaining conjugacy class is **freely** assignable. The others...?

5.3.8.3 Example

- 3-error correcting BCH code over $GF(2^6)$.
- $C_1 = C_2 = C_3 = C_4 = C_5 = C_6 = 0.$
- Each of these is in a conjugacy clas of size 6, so requires 6 bits to specify.
- The remaining components that can be independently specified are $C_0, C_7, C_9, C_{11}, C_{12}, C_{15}, C_{21}, C_{23}, C_{27}, C_{31}$. All belong to $GF(2^6)$.

However:

$$|A_9| = 3$$

Therefore,

$$C_2^3 = C_9$$
 (see above result).

Similarly,

$$|A_{27}| = 3, \Rightarrow C_{27}^{2^3} = C_{27}$$

Therefore $C_9, C_{27} \in GF(2^3)$. Also,

$$|A_{21}| = 2 \Rightarrow C_{21} \in GF(2^2)$$
$$|A_0| = 1 \Rightarrow C_0 \in GF(2)$$

All others $\in GF(2^6)$ but in no subfield thereof.

Hence, to specify each:

C_0	$1 \ bit$
C_9	$3 \ bits$
C_{21}	$2 \ bits$
C_{27}	$3 \ bits$

Total 9 bits

and the remaining $C_7, C_{11}, C_{13}, C_{15}, C_{23}, C_{31}$ require 6 bits each to specify. Hence, we can freely choose $6 \times 6 + 9 = 45$ bits of the codeword, producing a (63, 45, t = 3) BCH code.