5.0 Reed-Solomon Codes and their Relatives

5.1 Summary of the "Conventional" Model of RS Codes 5.1.1 History

- First general family of algebraic codes defined by structure.
- A. Hocquenghem (1959), "Codes correcteur d'erreurs;"
- Bose and Ray-Chaudhuri (1960), "Error Correcting Binary Group Codes;"
- I.S. Reed and G. Solomon, "Polynomial codes over certain finite fields," Siam J. Ind. and App. Math, v8, pp 300-304, 1960.
- Decoders developed by Peterson, Zierler, Berlekamp, Massey, Cooper, Retter, Sudan, others.

5.1.2 Definition

Definition 1 A Reed-Solomon Code is a cyclic code generated by

$$
g(x)=(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{2 t}\right)
$$

where α is primitive in $G F\left(q^{m}\right)$.
Therefore,

- length $=q^{m}-1$
- $d_{\text {min }}=2 t+1$ (will prove using Fourier transforms)
- $n-k=2 t \Rightarrow \mathrm{RS}$ codes meet the Singleton Bound

Definition 2 Any LBC which meets the Singleton Bound is called Maximum Distance Separable (MDS).

Corollary: $R S$ codes are MDS.

5.1.3 Encoding

1. Jointly select size q^{m} of symbol field and block length $n=q^{m}-1$.
2. Choose error correction capability t.
3. Find a primitive element α in $G F\left(q^{m}\right)$.
4. Form the generator polynomial:

$$
g(x)=(x-\alpha) \cdot\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{2 t}\right)
$$

Example:

- $n=15$
- Symbol field of size 16
- Double error correction $(t=2)$

$$
\begin{aligned}
g(x) & =(x-\alpha) \cdot\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right) \\
& =x^{4}+\alpha^{13} x^{3}+\alpha^{6} x^{2}+\alpha^{3} x+\alpha^{10}
\end{aligned}
$$

- $(15,11)$ RS code over GF(16), $d_{\text {min }}=5$.

5.1.4 Duals of RS Codes

Theorem 1 Dual of $R S$ code is an $(n, n-k) R S$ code with $d_{\min }=k+1$.

Theorem 2 The dual of an MDS code is MDS.
Proof: Count the (remaining)roots.
Dual of previous ex: $(15,4)$ over $G F(16), d_{\text {min }}=12$.

5.1.5 Information sets

Definition 3 In a linear block code, an information set is a set of k codeword coordinates which are linearly independent.
(Thus, any information set carries k information symbols).

Theorem 3 Any set of k codeword coordinates of an MDS code is an information set.

5.1.6 Modified MDS and RS codes

5.1.6.1 Punctured

Theorem 4 A punctured (n, k) MDS code is an $(n-1, k)$ MDS code.
Proof: Puncturing does not change information sets.

5.1.6.2 Shortened

Theorem 5 A shortened MDS code is MDS. Proof:

- To shorten, $k \rightarrow k-1$;
- then $n \rightarrow n-1$.
- But remaining information sets are not changed.
- $(n-1)-(k-1)=2 t$.

5.1.6.3 Extended

Theorem $6 A$ narrow sense $(q-1, k) R S$ code can be extended, by adding a parity check, to form a noncyclic (q, k, d) MDS code.

Comments:

- $n \rightarrow n+1, k$ unchanged.
- Now, any position contains a parity check on the other n.
- Any k positions remain independent

5.1.6.4 Doubly-extended

Theorem 7 Any narrow-sense, singly-extended ($n+1, k$) RS code can be (further) extended to form a noncyclic $(n+2, k) q$-ary MDS code by adding the symbol c_{n+1} to each code word, such that:

$$
c_{n+1}=-\sum_{j=0}^{n-1} c+j \alpha^{j \delta}
$$

where $\delta=$ the $B C H$ bound of the original $B C H$ code.
Proof:

See text, pp 171-172.

5.2 Summary of the "Conventional Model" of BCH Codes 5.2.1 Definition

- t, t_{0}, m, n integers;
- p prime;
- $q=p^{m}$;
- α of order n in $G F\left(q^{m}\right)$.

Definition 4 For any $t>0$ and any t_{0}, a BCH code is the cyclic code with blocklength n and generator polynomial

$$
g(x)=L C M\left\{m_{t_{0}}(x), m_{t_{0}+1}(x), \ldots, m_{t_{0}+2 t-1}(x)\right\}
$$

where $m_{t_{0}}(x)$ is the minimal polynomial of $\alpha^{t_{0}} \in G F\left(q^{m}\right)$.

Definition 5 A primitive $B C H$ code is a BCH code for which α is primitive in $G F\left(q^{m}\right)$.

5.2.2 Generating BCH codes
 5.2.2.1 BCH bound and the generator polynomial

Theorem 8 If the roots of every codeword $c(x) \in \mathcal{C}$ include $\alpha, \alpha^{2}, \cdots, \alpha^{2 t}$, then the minimum distance of \mathcal{C} is bounded from below by $2 t+1$:

$$
d_{\min } \geq d_{B C H}=2 t+1
$$

We call $d_{B C H}$

- BCH (lower) bound on $d_{\text {min }}$, or
- the design distance of the code.

5.2.2.2 To Design a BCH Code

Parameters:

- Select n and $d_{\text {min }}$.
- Determine k by designing the code.
- If k is not satisfactory, REPEAT. ELSE,

1. Find α, an $n^{\text {th }}$ root of unity in some extension field. (If α is primitive, then so is code.)
2. Select j_{0}.
3. Write

$$
g(x)=\operatorname{lcm}\left(m_{1}(x), m_{2}(x), \cdots m_{2 t}(x)\right)
$$

4. Determine G from $g(x)$ if necessary.

5.2.2.3 Example

Requirement: a 2-error correcting binary code with $n=15$. Solution: Use a BCH code with $2 t=4$ and $d_{B C H}=5$.

- Let α be a $15^{t h}$ root of unity; take $j_{0}=0$.
- The smallest field containing an element of order 15 is $G F(16)=G F\left(2^{4}\right)$.
- Hence, α is primitive in $G F\left(2^{4}\right)$.
- Let α be a root of $g(x)$, then so are $\alpha^{2}, \alpha^{4}, \alpha^{8}$.
- Also need α^{3} to have 4 consecutive powers.
- So, $g(x)=l c m\left[m_{1}(x), m_{2}(x), m_{3}(x), m_{4}(x)\right]$
- But $m_{1}(X)=m_{2}(x)=m_{4}(x)$ by conjugacy.
- Therefore $g(x)=l c m\left[m_{1}(x), m_{3}(x)\right]=m_{1}(x) \cdot m_{3}(x)$.
- Exponents of roots of $g(x)$ are $\{1,2,3,4,6,8,9,12\}$.

For example,

$$
\begin{aligned}
m_{1}(x) & =p(x)=1+x+x^{4} \\
m_{3}(x) & =\left(x-\alpha^{3}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{12}\right)\left(x-\alpha^{9}\right) \\
& =1+x+x^{2}+x^{3}+x^{4} \\
g(x) & =\left(1+x+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right) \\
& =1+x^{4}+x^{5}+x^{6}+x^{7}+x^{8} \\
\operatorname{deg}[g(x)] & =n-k=8 \\
k & =7 .
\end{aligned}
$$

So, the code is a $(15,7)$ code with $d_{\min } \geq 5$.
Since $w_{H}(g(x))=5, d_{\text {min }}=5$.

5.3 Codes based on the Fourier Transform

5.3.1 Fourier Transforms in Finite Fields

1. Recall Fourier transform:

- $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right):$ real or complex.
- $\mathbf{V}=\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$: the discrete Fourier transform of \mathbf{v}, where

$$
V_{k}=\sum_{i=0}^{n-1} e^{j 2 \pi i k / n} v_{i}, k=0, \ldots, n-1
$$

- $e^{j 2 \pi / n}$ is a complex $n^{\text {th }}$ root of unity.

2. The Finite Field Fourier Transform (FFFT or GFFT)

- Let $\operatorname{ord}(\alpha)=n$ in $G F(q)$.
- Let $\mathbf{v} \in G F(q)^{n}$.

Definition 6 The Finite Field Fourier Transform of \mathbf{v} is $\mathbf{V}=\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$, where

$$
V_{j}=\sum_{i=0}^{n-1} \alpha^{i j} v_{i}
$$

Then \mathbf{v} and \mathbf{V} are a Fourier transform pair,

$$
\mathbf{v} \leftrightarrow \mathbf{V}
$$

- \mathbf{V} has length n because $\alpha^{n}=1$.
- $V_{j} \in G F(q), j=0,1, \ldots, n-1$.
- DFT exists for every n for real and complex numbers.
- FT exists for $G F(q)$ only if $n \mid(q-1)$. (Why?)

Now, let

$$
n \mid q^{m}-1 \text { for some } m
$$

Then there exists element ω of order n in $G F\left(q^{m}\right)$ and

$$
V_{j}=\sum_{i=0}^{n-1} \omega^{i j} v_{j}, \quad \mathbf{V} \in G F\left(q^{m}\right)^{n}
$$

So, in general,

$$
\begin{aligned}
\mathbf{v} & \in G F(q)^{n} \\
\mathbf{V} & =\mathcal{F}\{\mathbf{v}\} \\
\mathbf{V} & \in G F\left(q^{m}\right)^{n}
\end{aligned}
$$

Note:

- Say \mathbf{v} is time domain signal. Then i is a discrete time variable.
- Say \mathbf{V} is spectrum of \mathbf{v} or is the frequency domain representation, and j is the "frequency."
- Any factor of $q^{m}-1$ can be a blocklength of $\mathcal{F}\{\cdot\}$.
- Most interesting is the primitive blocklength, $n=q^{m}-1$.
- It is easier to decode in the frequency domain (analog to linear systems?).

5.3.2 Properties of the FFFT

Hereafter, let $\left\{v_{i}\right\} \leftrightarrow\left\{V_{j}\right\}$ be a Fourier transform pair.

1. Additivity: $\left\{\lambda v_{i}+\mu w_{i}\right\} \leftrightarrow\left\{\lambda V_{j}+\mu W_{j}\right\}$ are a Fourier transform pair.
Proof:

$$
\begin{aligned}
\mathcal{F}\left\{\lambda v_{i}+\mu w_{i}\right\} & =\sum \alpha^{i j}\left(\lambda v_{i}+\mu w_{i}\right) \\
& =\lambda \sum \alpha^{i j} v_{i}+\mu \sum \alpha^{i j} w_{j} \\
& =\lambda V_{j}+\mu W_{j}
\end{aligned}
$$

2. Modulation $\left\{v_{i} \alpha^{i l}\right\} \leftrightarrow\left\{V_{((j+l))}\right\}$ are a Fourier transform pair. Proof:

$$
\sum_{i} \alpha^{i j} v_{i} \alpha^{i l}=\sum_{i} \alpha^{i(j+l)} v_{i}=V_{j+l}
$$

3. Inverses Over $G F(q)$,

$$
v_{i}=\frac{1}{n} \sum_{j=0}^{n-1} \alpha^{i j} V_{j}, j=0,1, \ldots, n-1
$$

Proof: In the Fourier transform, multiply, sum, and re-order.

$$
\begin{aligned}
\sum_{j=0}^{n-1} \alpha^{-i j} V_{j} & =\sum_{j=0}^{n-1} \alpha^{-i j} \sum_{k=0}^{n-1} \alpha^{k j} v_{k} \\
& =\sum_{k=0}^{n-1} v_{k} \sum_{j=0}^{n-1} \alpha^{-i j} \alpha^{k j} \\
& =\sum_{k=0}^{n-1} v_{k} \sum_{j=0}^{n-1} \alpha^{(k-i) j}
\end{aligned}
$$

But $q^{m}-1=p^{M}-1=n b$. Therefore, p does not divide n.

Since $\alpha^{n}=1$ and

$$
\begin{equation*}
x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right) \tag{1}
\end{equation*}
$$

$\alpha^{r n}$ is a root of (1) and

$$
\sum_{i=1}^{n-1} \alpha^{i r}=0
$$

if $r \neq 0 \bmod n$ and

$$
\sum_{i=1}^{n-1} \alpha^{i r}=n=\sum \alpha^{(k-i) j}
$$

if $r \equiv 0 \bmod n$.
4. Convolution Suppose $e_{i}=f_{i} g_{i}, i=0, \ldots, n-1$. Then, E_{j} is the cyclic convolution of F_{j} and G_{j}.
Proof:

$$
\begin{aligned}
E_{j} & =\sum_{i=0}^{n-1} \alpha^{i j} f_{i} g_{i} \\
& =\frac{1}{n} \sum_{i=0}^{n-1} \alpha^{i j} f_{i} \sum_{k=0}^{n-1} \alpha^{-k i} G_{k} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} G_{k}\left(\sum_{i=0}^{n-1} \alpha^{i j} \alpha^{-k i} f_{i}\right) \\
& =\frac{1}{n} \sum_{k=0}^{n-1} G_{k} F_{((j-k))}
\end{aligned}
$$

where $((\cdot)) \Leftrightarrow \bmod n$. This is the formula for cyclic convolution.

Exercise: Show that if $E_{i}=F_{i} G_{i}$ then

$$
e_{j}=\frac{1}{n} \sum_{i=1}^{n-1} f_{i} g_{((j-i))}
$$

5. Translation

$$
\begin{aligned}
& \left\{v_{((i-l))}\right\} \leftrightarrow\left\{V_{j} \alpha^{l j}\right\} \\
& \left\{\alpha^{i} v_{i}\right\} \leftrightarrow\left\{V_{((j+1))}\right\} \\
& \left\{v_{((l-1))}\right\} \quad \leftrightarrow \quad\left\{V_{j} \alpha^{j}\right\}
\end{aligned}
$$

Proof: Exercise.
6. Notation

$$
\begin{aligned}
v(x) & =v_{n-1} x^{n-1}+\cdots+v_{1} x+v_{0} \\
V(x) & =V_{n-1} x^{n-1}+\cdots+V_{1} x+V_{0}
\end{aligned}
$$

where

$$
\{v\} \leftrightarrow\{V\}
$$

as before.
Theorem 9 (a) $v\left(\alpha^{j}\right)=0 \Leftrightarrow V_{j}=0$.
(b) $V\left(\alpha^{-j}\right)=0 \Leftrightarrow v_{j}=0$.

Proof: By direct substitution and observation.

7. Decimation

- $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$.
- Choose b relatively prime to n.
- Let $P: i \rightarrow b i(\bmod n)$ define a permutation \mathbf{c}^{\prime} of \mathbf{c}.

$$
\mathbf{c}^{\prime} \triangleq \mathbf{c}_{((b i))}
$$

P is a cyclic decimation, choosing every $b^{t h}$ component of \mathbf{c} in a cyclic fashion.

Theorem 10 Let $G C D(b, n)=1, b B \equiv 1 \quad \bmod n$. Then, $\left\{\mathbf{c}^{\prime}\right\} \leftrightarrow\left\{\mathbf{C}^{\prime}\right\}$ where

$$
C_{j}^{\prime}=C_{((B j))}
$$

Proof:

$$
G C D(b, n)=1 \Leftrightarrow b B+n N=1
$$

So, by definition,

$$
\begin{aligned}
C_{j}^{\prime} & =\sum \alpha^{i j} c_{i}^{\prime} \\
& =\sum \alpha^{(b B+n N) i j} c_{((b i))} \\
& =\sum \alpha^{b B i j} c_{((b i))} \\
& =\sum \alpha^{i^{\prime} B j} c_{i^{\prime}} \\
& =C_{B j}
\end{aligned}
$$

where the last step is by the translation property.
8. Linear Complexity The Linear Recursion:

$$
V_{k}=-\sum_{j=1}^{L} A_{j} V_{k-j}, k=L+1, \ldots
$$

is characterized by $\mathbf{A}=\left(A_{1}, \ldots, A_{L}\right)$ and by length L.
Definition $7\{\mathbf{A}, L\}$ is an Autoregressive Filter that satisfies the recursion.

Definition 8 The length of the shortest linear recursion that generates a sequence $V_{0}, V_{1}, \ldots, V_{n-1}$ is called the linear complexity of $\mathbf{V}=\left(V_{0}, V_{1}, \ldots V_{n-1}\right)$.

Note: Recursion V can be considered as the Fourier transform of an n-tuple.

Theorem 11 The linear complexity of a vector \mathbf{V} of finite length (cyclically extended?) equals the Hamming weight of its Fourier transform.

Proof:

For $\mathbf{v}=\left(v_{0}, \ldots, v_{n-1}\right)$, let $v_{j} \neq 0, j \in\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$. Consider

$$
A(x)=\prod_{l=1}^{d}\left(1-x \alpha^{i_{l}}\right)=\sum_{k=0}^{d} A_{k} x^{k}
$$

Let $a(x)$ be the inverse Fourier transform of $A(x)$. Then,

$$
\begin{aligned}
a_{i} & =\frac{1}{n} \sum_{k=0}^{n-1} \alpha^{-i k} A_{k}=\frac{1}{n} A\left(\alpha^{-i}\right) \\
& =\frac{1}{n} \prod_{l=1}^{d}\left(1-\alpha^{-i} \alpha^{i}\right)
\end{aligned}
$$

Or $a_{i}=0 \Leftrightarrow i \in\left\{i_{1}, \ldots, i_{d}\right\}$. Therefore, $a_{i}=0 \Leftrightarrow v_{i} \neq 0, \forall i$, and

$$
a_{i} v_{i}=0
$$

5.3.4 RS Codes by Fourier Transforms

We require:

- Symbols from $G F(q)$ and $n \mid q-1$.
- Time domain and spectral components from $G F(q)$.

Definition 9 A Reed-Solomon Code of length n is one for which

$$
C_{j}=0, j \in\left\{j_{0}, j_{0}+1, j_{0}+2, \ldots, j_{0}+2 t-1\right\}
$$

From a previous theorem:

$$
c\left(\omega^{j}\right)=0 \Leftrightarrow C_{j}=0, \text { where } \omega^{n}=1
$$

Therefore, if $j_{0}=1$,

$$
\begin{equation*}
g(x)=(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{2 t}\right) \tag{2}
\end{equation*}
$$

Taking the inverse transform produces a non-systematic code:

$$
c(x)=\mathcal{F}^{-1}\{\mathbf{C}\}=\frac{1}{n} \sum_{i=0}^{n-1} \omega^{-i j} V_{i}
$$

If the order of ω is $q-1$ then ω is primitive and $n=q-1$.
Therefore, for a code satisfying (2), BCH bound requires:

$$
d_{\min } \geq 2 t+1=n-k+1
$$

But by Singleton bound:

$$
d_{\min } \leq 2 t+1=n-k+1
$$

Therefore, for the RS codes:

$$
d_{\min }=2 t+1=n-k+1
$$

and, for fixed (n, k) no code can have larger $d_{\text {min }}$.

5.3.5 Other Galois Field (Conjugacy) Constraints

In general, for $\{v\} \leftrightarrow\{V\}$

$$
v_{i} \in G F(q), \quad V_{j} \in G F\left(q^{m}\right)
$$

But for arbitrary $V \in \mathbf{F}_{q^{m}}^{n}$, in general

$$
v \notin \mathbf{F}_{q}^{n}
$$

which we usually want. (Note similarity to complex $S(f)$ for real $s(t)$.)

Theorem 12 Let $V \in \mathbf{F}_{q^{m}}^{n}, n \mid q^{m}-1$. Then

$$
v \in \mathbf{F}_{q}^{n} \Leftrightarrow V_{j}^{q}=V_{((q j))}, j=0,1, \ldots, n-1 .
$$

Proof of \Rightarrow :
For $j=0,1, \ldots, n-1$,

$$
\begin{aligned}
V_{j} & =\sum_{i=0}^{n-1} \omega^{i j} v_{i} \\
V_{j}^{q} & =\left(\sum_{i=0}^{n-1} \omega^{i j} v_{i}\right)^{q} \\
& =\sum_{i=0}^{n-1} \omega^{i q j} v_{i}^{q} \\
& =\sum_{i=0}^{n-1} \omega^{i q j} v_{j} \\
& =V_{((q j))}
\end{aligned}
$$

Proof of \Leftarrow :

Suppose

$$
V_{j}^{q}=V_{((j q))} .
$$

Then,

$$
\sum_{i=0}^{n-1} \omega^{i q j} v_{i}^{q}=\sum_{i=0}^{n-1} \omega^{i q j} v_{i}
$$

Let $k=q j$. Then,

$$
\sum_{i=0}^{n-1} \omega^{i k} v_{i}^{q}=\sum_{i=0}^{n-1} \omega^{i k} v_{i} j=0, \ldots, n-1
$$

But both sides are F.T.s, and the F.T. is unique. Therefore,

$$
v_{i}^{q}=v_{i} \Rightarrow v_{i} \in \mathbf{F}_{q} .
$$

5.3.6 Conjugacy Classes modulo n

Let $m_{j}=$ the smallest integer for which:

$$
j q^{m_{j}}=j(\text { modulo }) n
$$

Recall that q is relatively prime to n. So the sequence

$$
q, q^{2}, q^{3}, \ldots
$$

must repeat. Therefore, there is a smallest integer m_{j} such that all of

$$
\begin{equation*}
\left\{j, j q, j q^{2}, \ldots, j q^{m_{j}-1}\right\} \tag{3}
\end{equation*}
$$

are distinct, while $j q^{m_{j}}=j$. We say that (3) is the conjugacy class containing j, modulo n.

Note: By the previous theorem, if $\mathbf{c} \in \mathbf{F}_{q}^{n}$ then $C_{j}=C_{j q^{l}}, l=0,1, \ldots, m_{j}$. This can be used to design codes as we shall see.

5.3.7 Traces and Idempotents 5.3.7.1 The Trace

Definition 10 The q-ary trace of $\beta \in G F\left(q^{m}\right)$ is:

$$
\begin{aligned}
\operatorname{Tr}(\beta) & \triangleq \sum_{i=0}^{n-1} \beta^{q^{i}} \\
& =\beta+\beta^{q}+\beta^{q^{2}}+\cdots
\end{aligned}
$$

Since $(a+b)^{q}=a^{q}+b^{q}$,

$$
[\operatorname{Tr}(\beta)]^{q}=[\operatorname{Tr}(\beta)] \in G F(q)
$$

Note that $\operatorname{Tr}(\beta)$ is just the sum of the elements in the congugacy class of β. Exercise: Prove that all conjugates have the same trace.

5.3.7.2 Idempotents

In the spectral domain, let A_{k} be a conjugacy class and consider a spectrum for which:

$$
W_{j}= \begin{cases}0, & j \in A_{k} \\ 1, & j \notin A_{k}\end{cases}
$$

Obviously,

$$
W_{j}^{q}=W_{((j q))}
$$

and the time domain polynomial $w(x) \in \mathbf{F}_{q}[x]$.
Notice that the $j^{\text {th }}$ term of $w^{2}(x)$ is

$$
\left[\sum_{i=1}^{j} w_{i} w_{j-i}\right] x^{j}
$$

- So $w^{2}(x)$ is a convolution, and its spectrum is given by W_{j}^{2}.
- $W_{j}^{2}=W_{j}$.

Therefore,

$$
\begin{equation*}
w^{2}(x)=w(x) \tag{4}
\end{equation*}
$$

Eq (4) defines an idempotent.
Definition 11 If an idempotent $w(x)$ of a cyclic code satisfies

$$
c(x) w(x)=c(x) \bmod \left(x^{n}-1\right)
$$

$w(x)$ is called a principal idempotent of the code.

5.3.7.3 Further Results on Idempotents

Construction:

- Let $\left\{A_{i}\right\}, i \in I$ be a set of conjugacy classes.
- Let $W_{i}=0$ if $j \in A_{i}$ for all $i \in I$, and zero elsewhere.
- Then $w(x)=\mathcal{F}^{-1}\{W\}$ is an idempotent.

Definition 12 A primitive idempotent is one constructed from a single conjugacy class. In general an idempotent can be generated as the sum of a set of primitive idempotents.

Theorem 13 Every cyclic code has a unique principal idempotent.
Proof:

$$
W_{j}= \begin{cases}0, g\left(\omega^{j}\right) & =0 \\ 1, g\left(\omega^{j}\right) & \neq 0\end{cases}
$$

This defines a conjugacy class, so $w(x)$ is an idempotent. Now,

$$
g\left(\omega^{j}\right)=0 \Rightarrow w\left(\omega^{j}\right)=0
$$

Therefore $w(x) \in$ the code. Also, from the construction above,

$$
W_{j} G_{j}=G_{j}
$$

so that $w(x) g(x)=g(x)$. Finally,

$$
\begin{aligned}
c(x) & \in \mathcal{C} \Rightarrow c(x)=a(x) g(x) \\
c(x) w(x) & =a(x) w(x) g(x)=a(x) g(x)=c(x) \bmod \left(x^{n}-1\right)
\end{aligned}
$$

5.3.3 Spectral Representations of Cycic Codes

Time domain polynomial codeword representation:

$$
c(x)=a(x) g(x) \in \mathbf{F}_{q}[x]
$$

Then

$$
c_{j}=\sum_{i=0}^{k-1} a_{i} g_{((j-i))}
$$

which is the $j^{\text {th }}$ term of a cyclic convolution:

$$
\mathbf{c}=\mathbf{a} * \mathbf{g}
$$

Therefore, the spectrum is:

$$
\begin{equation*}
C_{j}=A_{j} G_{j} . \tag{5}
\end{equation*}
$$

If $A_{j}, G_{j} \in G F(q)$ and $C_{j} \in G F\left(q^{m}\right)$, then \mathbf{C} defined by (5) is a codeword.

Given an index set, $\mathcal{J}=\left\{j_{1}, \ldots, j_{r}\right\}$, and let

$$
\mathcal{C} \triangleq\left\{\mathbf{c} \in \mathbf{F}_{q}^{n}: C_{j}=0, \forall j \in \mathcal{J}\right\}
$$

Note: This defines a cyclic code.

- By Theorem 9, $\alpha^{j}=0 \Leftrightarrow C_{j}=0$.
- Therefore, the set \mathcal{J} of frequencies corresponds to the defining set $\mathcal{A}=\alpha^{j}, j \in \mathcal{J}$.
- So an alternate definition for a cyclic code is:

$$
\mathcal{C}=\left\{\mathcal{F}^{-1}\{C(X)\}: C_{j}=0, \forall j \in J\right\}
$$

5.3.8 Spectral Specification of BCH Codes

5.3.8.1 Introduction

Suppose we have a vector $\mathbf{v} \in \mathbf{F}_{q}^{n}$ where $n \mid q^{m}-1$ such that,

$$
\begin{aligned}
w_{H}(\mathbf{v}) & \leq d-1 \\
0 & =C_{j}=C_{j+1}=\cdots=C_{j+2 t-1}
\end{aligned}
$$

for some $0 \leq j \leq n-1$. Can such a vector exist?

Only if it is the all zero vector...

Theorem 14 Let $q^{m}-1=n x$. Then the only vector in \mathbf{F}_{q}^{n} of weight $(d-1)$ or less having $(d-1)$ consecutive spectral zeros is $\mathbf{0}$.

Proof:

- Given $w_{H}(\mathbf{v}) \leq(d-1)$.
- Recall that the linear complexity of $\mathbf{V}=w_{H}(\mathbf{v})$.
- Therefore, we write the recursion,

$$
V_{j}=\sum_{l=0}^{d-1} A_{l} V_{((j-l))}
$$

But if $(d-1)$ consecutive spectral components are zero, this recursion guarantees that all subsequent components will be zero.

Note that the foregoing theorem gives an alternate definition of the BCH bound.

Definition 13 A BCH code is a code over $G F(q)$ that satisfies the $B C H$ bound. In general,

$$
\begin{aligned}
C_{j} & \in G F\left(q^{m}\right) \\
c_{j} & \in G F(q)
\end{aligned}
$$

Generating BCH Codes

Properties of BCH codes:

- General: $C_{j} \in G F\left(q^{m}\right), c_{j} \in G F(q)$.
- Special case (RS): $C_{j}, c_{j} \in G F(q)$.

So,

- Specify $2 t$ consecutive spectral zeros.
- BCH bound requires that any nonzero word must have weight $\geq 2 t+1$.
- Therefore $d_{\min } \geq 2 t+1 \triangleq d$.
- d is called the "design distance" of the code.

Spectral Domain Specification of BCH Codes

- Select $2 t$ consecutive spectral zeros.
- By Theorem 12, other components are constrained and not freely chosen; i.e., given C_{j},

$$
\begin{aligned}
C_{((j q))} & =C_{j}^{q} \\
C_{\left(\left(j q^{2}\right)\right)} & =C_{j}^{q^{2}} \\
\vdots & \\
C_{\left(\left(j q^{m_{j}}-1\right)\right)} & =C_{j}^{q^{m_{j}}-1}
\end{aligned}
$$

where
$-A_{j}=\left\{j, j q, \ldots, j q^{m_{j}-1}\right\}$, the conjugacy class containing j
$-m_{j}=$ smallest integer such that $j q^{m_{j}}=j$.

Therefore,

$$
C_{j}^{q^{m j}}=C_{\left(\left(j q^{m}\right)\right)}=C_{j}
$$

and,

$$
C_{j}^{q^{m_{j}}-1}=1
$$

Therefore we can select for C_{j} only those $\beta \in G F\left(q^{m}\right)$ such that

- $\operatorname{ord}\{\beta\} \mid q^{m_{j}}-1$, or
- $\beta=0$.

5.3.8.2 BCH Encoding

Encoding \Rightarrow select a value for each of the $q^{m}-1$ positions in the word or in its Fourier Transform.

Procedure:

- Divide the $q^{m}-1$ integers into conjugacy classes. (Why?)
- Set $2 t$ consecutive frequencies to zero.
- The first element of each remaining conjugacy class is freely assignable. The others...?

5.3.8.3 Example

- 3-error correcting BCH code over $\operatorname{GF}\left(2^{6}\right)$.
- $C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=C_{6}=0$.
- Each of these is in a conjugacy clas of size 6 , so requires 6 bits to specify.
- The remaining components that can be independently specified are $C_{0}, C_{7}, C_{9}, C_{11}, C_{12}, C_{15}, C_{21}, C_{23}, C_{27}, C_{31}$. All belong to $G F\left(2^{6}\right)$.

However:

$$
\left|A_{9}\right|=3
$$

Therefore,

$$
C_{2}^{3}=C_{9}(\text { see above result })
$$

Similarly,

$$
\left|A_{27}\right|=3, \quad \Rightarrow C_{27}^{2^{3}}=C_{27}
$$

Therefore $C_{9}, C_{27} \in G F\left(2^{3}\right)$. Also,

$$
\begin{aligned}
\left|A_{21}\right| & =2 \Rightarrow C_{21} \in G F\left(2^{2}\right) \\
\left|A_{0}\right| & =1 \Rightarrow C_{0} \in G F(2)
\end{aligned}
$$

All others $\in G F\left(2^{6}\right)$ but in no subfield thereof.

Hence, to specify each:

C_{0}	1 bit
C_{9}	3 bits
C_{21}	2 bits
C_{27}	3 bits

$$
\text { Total } 9 \text { bits }
$$

and the remaining $C_{7}, C_{11}, C_{13}, C_{15}, C_{23}, C_{31}$ require 6 bits each to specify. Hence, we can freely choose $6 \times 6+9=45$ bits of the codeword, producing a $(63,45, t=3) \mathrm{BCH}$ code.

