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4.0 Cyclic Codes

4.1 Informal Definition

Definition 1 A code C is a cyclic code if every cyclic shift of c also
belongs to C.

[]

That is, if C is cyclic,

e (a,b,c) € C= (b,c,a) €C;

e recursively so.
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We will study linear cyclic codes. Why?

e Cyclic code words are easily generated?
— They are, but that’s not the reason.

e Cyclic codes have a rich, complex structure which permits the
coding theorist and the engineer to:

1. understand precisely the performance and limitations of the
code, and

2. study classes and families of cyclic codes that have properties
specific to an application.
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Definition 2 For a cyclic code C,
(Co, Cly. .- Cn—l) cC=> (Cn—la Co, - - - Cn_g) e C.
[]

e Let us represent a cyclic code word of length n by a polynomial of
degree n — 1:

C (co,C1y--.,cn_1) €C

c(x) co+crx+- - F+epx"teC

e or 2 equivalent notations for the same concept.

e So, in addition to ¢(x),

Cho1+cor+crx’ +cpox" el
Cro+ Cp 12+ cox? -+, 32"t eC

cLt+cox+ -+, 12" 4+ teC
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c(r) = co+cx+--+cp"

xc(x) = coxr+ x4+ 4y o t4e, 12"

But, the cyclic shift of ¢(x) is

2 1
Cr—1+ Cox +c1x° -+ Cp_ox™ .

Is there a way to derive the cyclic shift of c(x) from the polynomial
re(x)?
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Yes!
e Divide zc(z) by 2™ — 1.
e The remainder is the cyclic shift of codeword c(x).

Proof: Straightforward algebra (Exercise).

Temporarily, we write this remainder as < xc(x) >. Then,

cot+crx+---+c, 1x" el

2 1
Cn—1+cox +c1z° -+ Cp_ox”™ .

2 1
Cr—9 + Cp_1T + cox” -+ Cp_zx™ .
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Theorem 1 The set of polynomials of degree n — 1 is closed under
addition, subtraction, and multiplication modulo x™ — 1.

Proof: By construction. Work it out. []

e Such an algebraic structure is called a ring.

e To study the rich algebraic structures of cyclic codes, we need
some modern or abstract algebra.
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4.2 The Algebra of Cyclic Codes
4.2.1 Rings

Definition 3 A commutative ring is a set R with two operations &
and x such that:

e R /s a commutative group under @ ;
R is closed under x ;

* IS commutative and associative: For a,b € R,

(axb)*xc=ax(bxc),

x distributes over P :

ax(bdc) = axb @ axc
(doe)xf = dxf @& exf;

If there is an identity e under x, it is unique.
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Ring Properties:

e Let O = the identity under & and £ = the identity under x (e.g.,
like 0 and 1.)

O xa a*xQO = 0.
a* (—b) (—a)xb= —(axb).

e The (multiplicitive) identity £ in R is unique.

1)—1

e The (multiplicitive) inverse (a~

Exercise: Prove these.

Important Example:
The set R|x| of univariate polynomials with real coefficients is a
commutative ring with identity 1.




(©2004, A. Brinton Cooper III

Definition 4 An integral domain /s a ring with a cancellation
property.

e.g., Z is an integral domain, and:

ac=ad =c=d, Ya #0, c,déeZ.

However, a1 does not exist in Z.
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4.2.2 Fields

Definition 5 A field is a commutative ring in which every element

also has an inverse under the second operation x.

Note: In most cases, you can think of & and x as “addition” and

“multiplication.”

10
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Examples:

e Q, R, and C are examples of infinite fields. (Exercise: find the
multiplicative inverse of a + 5b in C.

e (GF(q) is the finite field of ¢ € Z elements. (There are restrictions
on ¢ as we shall see later.)

— GF(2) (Exercise: construct the tables.)
— GF(3) ={0,1,2}. (Exercise: construct the tables.)

11
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Exercise: Is this modulo 4 arithmetic?

m

Later: How to construct GF(q) for any allowed q = p™.

12
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4.2.1 Subfields

Definition 6 A subfield /s a subset of a field which itself is a field
under the “inherited” operations.

The original field is said to be an extension of the subfield.

Examples:
e QQ (rationals) is a subfield of R (reals)

e R is a extension of Q.

e R is a subfield of C (complex).

e C is a extension of R.

13
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4.2.3 Polynomial Algebra and Galois Fields
4.2.3.1 The Integer Ring, Z

Since cyclic codewords are polynomials, an algebra of polynomials
will be helpful.

Definition 7 Let a,b € Z.

e (a,b) = GCD(a,b) = largest d € Z s.t.: d|a and d|b.

o LCM(a,b) = smallest m € Z s.t.: a|lm and b|m.

e a,b are said to be relatively prime if GCD(a,b) =1

e a Is said to be prime if divisible by 1 and a only.
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The Division Algorithm of Algebra: For any a,b # 0, € Z, there
exist a quotient ¢ and a remainder r, both in Z such that:

a=bq+r.

Lemma ¢ and r are unique.
Proof:

e Suppose not. Then there are two quotients and remainders:
a=bq + 1

a = bga + 79
0="0(qg1 —q2) + (r1 —72)

e Therefore, (r1 — r2) is an integer multiple of b.

e But r1 < b and ro < b = contradiction.

15
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Definition 8 When a = bq + r, we write:

Definition 9 We say that

a

a

Theorem 2 Fora,b,t € Z,

Rt [CL + b] = Rt [Rt [CL] —+ Rt [b“
R:|ab] Ri{ R¢|a] - R¢|bl]}.

Proof: based upon the uniqueness of the remainder.

16
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The division algorithm is used to find the GCD:

Theorem 3 (The Euclidean Algorithm) Let a < b € Z. Then
d = GCD(a,b) can be computed by the iterative algorithm:

b qa+ry, 0<r<a
a gor1 + 12, 0 < 1o <1y

gzra +13, 0 < rsz <rg

= (4nTn-1 + Tn, 0 S Tn < T'n—1

= gn+1Tn

e Now, d|a, d|b = d|ri = d|rs---d|r,

o Also, rp|rpn_1 = Tn|Tn_o- - rp|la = r,lb.

e Hence, r,,|d and d|r,, sod =1,.

17
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Corollary: let a,b € Z. Then there exist integers ¢ and d such that
GCD(a,b) = ac+ bd. (2)
Proof:
e From proof of Euclidean Algorithm, GC'D(a,b) = r,

e Solve the linear equations (in the proof) for r,, as a linear function
of a and b. []
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4.2.3.2 Constructing finite fields from Z
e Let g be a positive integer.

e Let Z/(q) ={0,1,...,q — 1}, the integers modulo q.

— Hence, it decomposes the ring Z of integers into ¢ semi-infinite
cosets!

e Fora,be Z/(q), define:

a+b R,|a + b]
a-b = Ry[ab]

Theorem 4 7./(q) is a ring under the addition and multiplication

operations defined above.

Proof: Work through the axioms.




(©2004, A. Brinton Cooper III

Definition 10 Z/(q) is called the ring of integers modulo q.
[]

Theorem 5 7Z/(q) is a field if and only if q is a prime integer.

Proof: See, e.g., Blahut, Sect 4.2. []

e Hence, to construct a finite field GF(p) for any prime integer p,
form Z/(p).

e For certain nonprime values of ¢, a finite field GF(q) can also be
constructed.

e This requires the study of rings of polynomials.

20
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4.2.3.3 The Polynomial Ring

Definition 11 A polynomial over GF'(q) is an expression

f(x) = fo+ fix + fax® + -+ fo1z™ 1,

where f; € GF(q), i =0,1,2,...,n— 1.

degree: deg|f(z)] =n — 1.
deg|0] = —oo by convention.
f(x) is said to be monic whenever f, 1 = 1.

equality:

21
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Residues in GF(q)[x] :

e Notice the analogies with residue theory in 7.

Definition 12 r(z) divides s(x), r(x)|s(x) < there exists
polynomial a(x) such that

Definition 13 An irreducible polynomial p(x) is divisible only by
scalar a and by ap(x)

22
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Definition 14 A prime polynomial is a monic, irreducible
polynomial of degree at least 1. []

Definition 15 The greatest common divisor GC D|r(x), s(x)] is the
monic polynomial of largest degree that divides each. []

Notation: The following notation is also used.

GCD[r(z), s(x)] = (r(z), s(x))

Definition 16 The least common multiple LC M [r(x), s(x)] is the

monic polynomial of smallest degree that is divisible by each. []

23
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Definition 17 r(z) and s(x) are said to be relatively prime or
coprime if
GCDi|r(x),s(z)] = 1.

Definition 18 The formal derivative of f(z) is:

(n—1))fac12" 2 + (0 —2)) fa—22" > + -+ f1

1

where (1)) =1+ 1+ ---+ 1 is called an integer of the field.?

Lemma: If r(z)|s(x) and if s(x)|r(z) then r(x) = +s(x).

#When there is no confusion, we will write ¢ for ((7)).

24
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The Division Algorithm for Polynomials.

Theorem 6 For every pair of polynomials, b(x) # 0, and a(x), there

exist a unique pair of polynomials, Q)(x) (quotient) and r(x)
(remainder) such that:

where deg|r(x)] < deg[b(x)].

Proof: Similar to of the Division Algorithm for Integers; replace the
integer value with the degree of the polynomial (Blahut, p. 74). []
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Recall:

a(r) = Q(z)b(z) +r(z)

Definition 19 We call Ry(,)|a(x)]
of a(x) modulo b(x) and write

r(x) the remainder or residue

26
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Theorem 7 Let d(z) = g(x) - h(x). Then, for any polynomial a(zx),

Ry(xyla(z)] = Ry(a){ Ra(x)la(x)]}

Proof: Divide a(x) by d(x):

a(r) = Qi(z)d(z) + Ry()la(z)]
= Qu(z)g()h(z) + Ry(a)[a(z)]

Ry(a)[a(2)] = Ry(a){ Ra(a)la(z)]}

27



(©2004, A. Brinton Cooper III 28

Theorem 8

Rala(@) 1 5(@)] = Rawla(@)] + Rao )]

Proof: As with the residues, use the division algorithm and equate the
remainders. (Blahut, p. 74) []
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The Unique Factorization Theorem for Polynomials

Theorem 9 Any monic polynomial over a field can be uniquely
factored into monic irreducible polynomials over that field.

Proof: Blahut, p.75. This generalizes the well-known UFT for integers:

a €l =a=np" -py2---prm

for some finite n.
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Theorem 10 (The Euclidean Algorithm for Polynomials.) Let
a(x),b(x) C GF(q)|z] and degla(x)] < deg|b(x)]. Then
GCD|a(x),b(x)| can be found by the iterative algorithm:

and a- GCDla(z),b(x)] =

Ja(z) + r1(x)
Q2(x)ri(x) + ro(x)
Q3

(
2(z) +r3(z)

Qn(z)rn—1(x) + 70 ()
Qn+1(z)rn(x)

rn(x), where a € GF(q).

30
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Proof: of Euclidean Theorem for Polynomials parallels that for the
integers (Blahut, p.76). []

Theorem 11 (The Fundamental Theorem of Algebra) Let
deg|f(x)] = n. Then, f(x) has at most n zeros and f(a) = 0 if and

only if (x — a)|f(x).
Proof: See text. []

31
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4.2.3.4 Finite Fields from Polynomial Rings

e By analogy with Z/(q), we use quotients in GF(q)|x| to construct
finite fields.

e This permits construction of fields not possible using integer
residues.

e For notational simplicity, let F, = GF(q). be any finite field

having g elements.

Now, consider p(z) € F,[z] with deg[p(x)] > 0.
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Definition 20 The polynomials modulo p(x) over F,:

Fylz]/(p(x)) = {f(z) = s.t. deg[f(x)] < deg[p()]}

Now divide:

Then
o ry(x), Tn(x) € Fylz]/(p(2)).
o If r,(x) = ri(z), then we write
g(x) = h(z) (mod p(z))
even if g(z) # h(z).

33
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Theorem 12 F [x|/(p(x)) is a ring.
Proof: Test the addition and multiplication axioms mod p(x). []

Theorem 13 F,|x|/(p(x)) is a field if and only if p(x) is irreducible.
Proof: Many texts. []

o Clearly F,[z] contains ¢ elements where m = deg|p(x)].

e We call this field, GF(¢™) or Fym.

e So any prime polynomial p(xz) can generate a field.

34
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Compare:
o p(x) € Fylz].
o . [z]/(p(x))is Fym = GF(¢™) for prime p(x).

e [F,m is an extension field of [F,,.

o [, = GF(q) is a subfield of F,m = GF(¢™).

35
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Example: Let p(z) =2* +x +1

e p(x) is prime over Fo (verify). So,

o Fo(x)/(p(x)) is a field with 22 = 4 elements and

- CC_|_77 and 44 X 7 mOd p(x)
— Members (polynomials of degree < 2):
0 0

1 xT

X LUl

r+1 z2

Important note: Although elements of nonprime fields are
polynomials, now that we can write down the + and X tables, we can
use any convenient notation. For example, in GF(8) we can use the
symbols 0,1,...,7 so long as we don’t confuse the field with Zs.
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Lemma: The nonzero elements of GF'(q) form a multiplicative group.
Proof: Obvious L.

e Suppose 1,3, 5%, .- € GF(q) where order of 3= m.

e Then, m | ¢ — 1 (from coset decomposition).

Definition 21 An element of GF'(q) of order ¢ — 1 is a primitive
element of GF(q) []

Lemma: If o is primitive in GF(q), then {1,a,a?,...,a972} are all

the nonzero elements of GF'(q).

Proof: From definition of primitive. []
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Theorem 14 Let {(1, B2, -+ ,Bq—1} be the non-zero elements of
GF(q). Then

7 =1 = (z— ) (&~ P2) - (z = By-1)
Proof:
e For1<j<(¢g—1)and 3; € GF(q)

m; | ¢—1.

Therefore

BITH=(B7")

so that 3; is a zero of 2971 — 1.

38
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Theorem 15 GF(q) always contains a primitive element.
Proof:

e The non-zero elements form a cyclic group.

e Therefore, there is an element of order ¢ — 1.

[]

Definition 22 A primitive polynomial is an irreducible polynomial

p(x) of degree m over GF(q) having a primitive element of GF(q™)

as a root.

[]
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This definition means that, if:
1. p(x) is irreducible over GF'(q),

2. « is primitive in GF'(¢™), and

e p(x) is a primitive polynomial and

a? 1 =1.

40
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Example of generating a nonprime field
Let

e p(z) =z*+x+1€ GF(2) be primitive (can verify — How?).

e « be primitive in GF(2*) and p(a) = 0. Then,

a*+a+1=0
From (5) we can write:

o 1+ «

5}

Q a—i—on

etc. The complete set of powers of o follows.
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Exercise: Generate GF(2*) using a different primitive polynomial. Do

you get the same field?

43
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4.2.3.5 The Structure of GF(q)

e We seek to do “arithmetic” in GF(q).

Definition 23 The characteristic of GF'(q) is the number of
elements in its smallest subfield.

Example: The characteristic of GF(16) is 2.

44
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Theorem 16 Every finite field GF(q) contains a unique, smallest
subfield that contains a prime number of elements.

Proof:

e Every GF'(q) contains 0 and 1.

e let G={0,1,2,..., r—1}, wherei=1+1+---+1,

7 times

So G is a cyclic additive, finite subgroup of GF(q) of order r.

Hence, addition in G is modulo r.

For 1,5 € GG,

(I4+1+--+1)-j
(G434 +37).

Therefore “ x ” is modulo r as well.

45
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e Since G is
— cyclic,
— of order r

— having modulo r operations “+ 7 and “ x 7,

e then it is by an earlier proof, a prime field of size r.

e Since it is prime, it has no subfield, and the theorem is proved.

46
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Corollary: The characteristic of any Galois field is prime.

Proof: Follows immediately from the previous construction

Corollary: In a field of characteristic p, (a + b)P = aP + bP.
Proof:

(a+b)P = aP + <p>ap—1b+ (p)ap‘2b2+---+ (
1 2 P

But

(’?) =0 mod pVy,

and the lemma is proved.

47
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Example (continued)

Arithmetic in GF(2%) is performed in this manner:

. . 4
e (x): o x af =tk ( mod 27—1)

e (+): From the table,

045—|—049

48
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More on Extension Fields

o Let GF'(q) be a subfield of GF(Q) and 5 € GF(Q). Then,

Definition 24 The minimal polynomial mg(x) of 3 over GF(q) is
the prime polynomial of smallest degree over GF(q) for which
mg(B) = 0. L]

Theorem 17 Two-part theorem:
e |: Every 8 € GF(Q) has a unique minimal polynomial over GF(q).

e /I: If m(x) is the minimal polynomial of 3 and if g(3) = 0, then
m(z)|g(x).

Proof: See text. []
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Corollary: If my(x),--- ,my(x) are the minimal polynomials over
GF(q) for all the elements of GF(Q), then

k
29— = Hmz(x)
i=1

Proof: (3 is always a zero of @ — z, so this is true by UFT.

50
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Theorem 18 For any g(x) over GF'(q), there exists an extension field
GF(Q) in which g(z) =[](x — ;).

Proof: See text. []

Definition 25 A splitting field of g(x) € F,|z] is any extension
GF(Q) of GF(q) in which g(x) factors into linear and constant terms
only.

[]

51
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Theorem 19 Let o be primtive in GF(Q), an extension of GF(q)
and let deg|mq(x)] = m. Then

e ()=q™, and

e Any 8 € GF(Q) can be written as

5:bm—1am_1‘|‘”'—|‘b104—|—b0, bZEGF( )

Note: Therefore, GF(Q) is a vector space over GF(q).

Proof: See text.

52
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The following follow directly from the theorem and are

computationally useful.

e For every prime number p and positive integer m, there exists a

finite field of size p™.

e In GF(q), g=p™, (a+b)? =a+ b

e The smallest splitting field of the polynomial 2P" — z has exactly

p™ elements.

53
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4.3 Viewing Cyclic codes from Extension Fields -
An Example

e For a primitive in GF(2°), let

p(x) = z°+zx+1
p(a) 0

H [ozo,al,OzQ,OzB,a4,a5,a6} :

e Expanding powers of «a, write H in binary form:

1 001 0 11
01 0 1 1 1 0
0O 0 1 0 1 1 1

ie., o =1+ a, etc.
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e Let H be check matrix of some binary code C.

e Forc e,

= 0
which defines a polynomial ¢(x) having « as a root.

e Thus we establish the correspondence between codewords and
polynomials

e Note: H is the check matrix of the binary, Hamming (7,4) code.

55
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In general,
e Let H be (n — k) X n g-ary matrix s.t. m|(n — k).

e Represent the first m rows of H as a single row of symbols from
GF(q™), (B11,---,01n). Repeat for every set of m rows.

611 512 T 517@
511 512 e 5277,

Bpl 6/)2 e Bpn

n—k

m

10:

This is not new, merely more compact. However,...




(©2004, A. Brinton Cooper III

o Consider the special case where B;; = %7_1.

e Then the i'" row of H can be written: 72,4}, ..., 4", for

—1=1,...,pand

—n=q" —1.

57
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For some c € C

cH?
n—1
D> e

=1

So C is all ¢(x) of degree < n — 1 s.t. c(y;) =

and H is the check matrix of the code C, where

C ={c(z) s.t., deglc(z)] <n, c(v;) =0, j=1,...

= But we have not shown that C is cyclic. <

58
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4.4 Cyclic Codes, Formally
4.4.1 Algebraic Description of Cyclic Codes

Definition 26 F,[z] = the ring of polynomials over GF(q).

[]

Definition 27 F,[z]/(z™ — 1) = the ring of polynomials over GF(q)
mod (z™ — 1).

[]
Definition 28 A subset I of any ring R is an ideal if
e |t is a subgroup of the additive group of R, and

ercRandacl =arcl.

59
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Clearly ¢(x) € Fylx]/(z™ — 1) = degle(z)] <n —1

and,
Lemma: zc(z) € Fylx]|/(z" —1).

Proof: See text.

So,
e Associate n-tuple ¢ € sC with ¢(z) € F,|z|/(z"™ — 1).
e All such codewords c, then, are cyclic.

e xc(x) is the cyclic shift of ¢(x).

Notation: C represents both the codewords {c} and the polynomials

e(x)}.

60
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Theorem 20 C is a g-ary linear cyclic code of length n if and only if
the {c(x)} € C form an ideal in F,[z]/(z" — 1).

Simply put, a cyclic code of block length n is an ideal in the ring of
polynomials modulo x™ — 1.

Proof:
Case i (if): Assume 1 and 2 are true. Then C is:

e closed under +.
e closed under mult by any scalar (where a(x) is a “scalar.”)
e therefore, is a subspace, therefore a code.

o If a(x) =z, Cis cyclic.

61
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Case ii (only if): Assume C is a cyclic code. Then it is

e a subspace;

e closed under
— +
— multiplication by a scalar, specifically -

— multiplication by x.

e and, therefore, under multiplication by arbitrary polynomial a(x).

[]

62
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4.4.2 Generating Cyclic Codes

Lemma: Given an ideal T of F|x|/(xz™ — 1). The non-zero monic

polynomial g(x) of smallest degree in T is unique.
Proof:

o Let deglg(z)] =r.

e Select a € F, so that ag(z) is monic. Note that ag(x) € T .

Suppose another monic f(x) € Z with deg[f(z)] = r.
Then f(x) — g(x) € 7.

But deg|f(z) — g(z)] < deglg(z)].

— This contradicts our choice of g(x).

Therefore g(x) is as claimed.

63
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Definition 29 : The non-zero polynomial g(x) of smallest degree in
ideal I is called the generator polynomial of the ideal.

[]

Theorem 21 A cyclic code consists of all multiples of its generator

polynomial g(x) by polynomials a(x) of degree < k — 1.
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Proof:

e If g(x) € C, then a(z)g(x) € C Va(x).

e Suppose c¢(x) € C, and suppose:

c(x) = Q(z)g(r) + s(xz).

e But ¢(z) € C, and Q(x)g(z) € C = s(x) € C. But

deg[s(x)] < deg|q(z)]

65
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Theorem 22 : A cyclic code C of length n and generator polynomial
g(x) exists if and only if g(z)|(x™ — 1).

Proof:
e Suppose C =< g(x) > but
" —1
Ryn_1(z" —1)=0 Ryn_1|Q(x
Ryn1]|Q(x

e Since R;»n_1|Q(x)g(x)] € C, then s(x) € C.

e But: deg[s(x)] < deglg(x)], so s(x) =0 and g(z)|(z™ — 1).

e Conversely, every g(x)|(x™ — 1) can generate a code.
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4.4.3 Parity Check Polynomial

Definition 30 : Let 2" — 1 = g(x)h(x). If g(x) generates a code,
then we call h(x) the parity check polynomial of the code.

Lemma: For every ¢(x) € C
Ryn_1|h(x)c(z)] =0

Proof:

e For some a(x)
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4.4.4 Error Polynomial
e Transmit g-ary codeword c(x) € C over noisy channel.

e Receive vector v(x)

e Both are in F,[z]/(z™ —1).

Definition 31 : The error polynomial is the difference v(x) — c¢(x)
between received and transmitted polynomials.

[]

v(x) = c(x) + e(x)

This is a model for the class of additive noise channels.
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Definition 32 : The information encoded by C is represented by a
polynomial a(x), degla(z)] <k — 1.

a(x)g(x) mod z"™ —1
e C ={c(x) =a(x)g(x)} is not systematic in (try it!).

Lemma: c(x) belongs to a systematic, cyclic code if

c(z) = 2" Fa(z) + t(z)

where t(x) is chosen so that c(x) =0 mod z" — 1.

Proof: Exercise

[]

69



(©2004, A. Brinton Cooper III

4.5 Explicit Constructions of Cyclic Codes

e Objective: To find an explicit construction of g(x) for cyclic code
of length n.

Consider the prime factorization:

z" —1 fi(@)fa(z) - - - fa()

e Select some factors of ™ — 1:

g(z) = fi,(x) - fi,(x) - fi,(x), j=1,2,---
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e How many such g(x) can we form?

— 2% possibilities;
— Eliminate choosing no factors.
— Eliminate choosing all factors.

— = 2% — 2 possiblities.
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4.5.1 Finding a Generator Polynomial ¢(x)

We consider two ways to specify g(x), by its factors and by its roots.

" —1=]] fil)

This prime factorization is unique.
B; #0 € GF(q™) is a root of (6).
And we can factor each f;(x) in GF(q™):

x4 _1_1_Hf@ ﬁx—ﬁj

1=1
e Each 3, will be a zero of exactly one such polynomial.

e Each f;(x) is the polynomial of smallest degree such that

fi(Bj) = 0.

(6)
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Theorem 23 : A polynomial ¢(x) is a codeword in a primitive code if

and only if all the roots of g(x) are also roots of c(x).

73
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Proof:

Let {3,} be the set of roots of g(x).

e Every codeword c(x) = a(x)g(x). Therefore

c(Bj) = a(B;)9(B;) = 0.
e Conversely let ¢(5;) = 0. Divide by mg, (x):

Q(z)mpg, (x) + r(z)
0= Q(Bj)mg,(8;) + s(5;)
0

because deg|s(x)| < deg[mg, (x)].
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Example: Find all binary cyclic codes of length n = 15.

151 (z+ 1)z +z+1D(a* +2+1)

(et + D+ 2P+ 2+ +1)
= fil@)faz)fs(z) falz) f5(2)

e There are 5 factors, so 2° — 2 nontrivial binary cyclic codes.
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e Example:(continued) Let g(x) = fa(x)f5(x):

gx)=a®+at+2+a+1

fa(x) is primitive (verify), so one of its roots « is primitive in
GF(2%).

Also o is a root of f5(x) (verify).

Therefore the roots of g(x) include o, o?.

deglg(x)] =8=n—k,so k=T1.
wrr|g(x)] =5 (see above) so dpin < 5.
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e Generally, if we want g(3;) =
— we must find mg, (z),--- ,mg (z).
— Set

g(x) — LCM[mﬁl (I), T, Mg, (:C)]

and g(x) is as desired.

e How do we find mg,? (See next Theorem.)

Exercise: If deg|mg(z)] = h and mg(3) = 0 what are the other h — 1
other zeros of mg(x)?
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Theorem 24 : If 3 is an element of GF(q™) with minimal polynomial

mga(x) over GF'(q), then mg(x) is also the minimal polynomial of 39.

Proof: Text. []

Definition 33 : Two elements of GF(q™) having the same minimal

polynomial over GF'(q) are said to be conjugates with respect to
GF(q).

e So 3 and (3¢ are conjugates by the theorem.

e S0 are ﬁQQ, p ,qu_l where r is the smallest integer such that

BT =5

e This leads directly to ...
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Theorem 25 mg(z) = (z — B)(z — 82) - (x — B ).
Proof:

e All the conjugates of 3 are roots.

e Must show that the coefficients of mg(z) lie in GF(q).

m ()]

(z? = B9)--- (27 = B)

But also, by the theorem:

Therefore mgﬁ = m,3.
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Summary of foregoing:

e Given a field GF'(q), select blocklength n.

e Using primitive element, find minimal polynomial and conjugate

roots.

e Add additional roots if needed to obtain desired k.

e Write down g(x).
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4.5.2 Non-primitive Cyclic Codes.

Definition 34 For a code over GF'(q), a blocklength of the form
n = q" — 1 is called a primitive blocklength.

A cyclic code of such length is called a primitive cyclic code.

Lemma: n divides ¢"* — 1 for some m.

Theorem 26 : Given GF(q) and integer n relatively prime to q.
Then there exists an integer m for which

(2" = D)~ ~ 1)

Then 2™ — 1 has m distinct roots in GF'(¢"™).

[]
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4.5.3 Summary: How to Describe any Cyclic Code

e A cyclic code of (given) length n over GF'(q) is generated by g(x)
where

g(x)|(z" = 1)

To get g(x), select primitive element o € GF(¢™), where

g"—1 = nb

™ = 1

Determine the minimal polynomial m,(x) over GF(q).

Then mq(x) | g(x).

For lower rate code, find another root, & and write
g(x) = LCM (my(x), mg(x)) .

Note: We can (and will) say more about how to design C to have
given rate or minimum distance.
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4.6 Matrix Description of Cyclic Codes
4.6.1 Formal Method

o Let g(x) € F,|x| have zeros v;, i =1,...,r in GF(q™).

e If ¢(x) is a codeword, ¢(y;) =0, i =1,...,r, or

n—1

chvg:(), r=1,...,7
§=0

e Since there is H for which cH? = 0, this suggests:

U & S i
i

oG S AR =

over GF(¢q™).
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Can write %‘;j = (i0s Vi1, - - - » Yitn—1))» Vie € GF(q).

Then replace each element in H by a column m—tuple over

GF(q).

This gives a matrix having dimensions rm x n over GF(q).
e Note: Remove linearly dependent rows.
e This gives H matrix over GF'(q).

This is a cumbersome algorithm.
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4.6.2 A Direct Method

e Use the generator g(x):

e Consider coefficients of ¢ = aG'":

85



(©2004, A. Brinton Cooper III

k—1n—k

a(@)g(z) = 33 aigjatt

i=0 j=0

apgo + (@190 + apg1)x + - - -
1

+(ak—2Gn—k + ak—1gn—k—1)l’n_2 + ap_19n—rx""

¢ = (Ar—19n—k, (@k—2Gn—k + Qk—19n—k—1), - (@190 + @0g1), @0 G0),

0 g1 9o
0
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e Recall z" — 1 = g(x)h(x)

e For any codeword c(x)

Ryn_1|c(x)h(xz)] =0

e As above, we can use h(x) to write:
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e To show that GH' = 0:

— The product of s row of G and t* column of H” has the form

uT:Zgr_ihi:O, 1<r<n-1,

i=0
— and wu, is the coefficient of 2" in g(x) - h(x)
e Hence, u, = 0 unless r = 0 or n.

Hence, GH = 0 and H is the parity check matrix.

39
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4.6.3 The Dual Code

e The check matrix H of the code generated by G has the form of
a generator matrix for a cyclic code.

e Therefore, the dual of a cyclic code is a cyclic code.

e Examining the order of coefficients in H shows that the dual code
is generated by

h(z) = zFh(z™1)

STOP
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