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4.0 Cyclic Codes

4.1 Informal Definition

Definition 1 A code C is a cyclic code if every cyclic shift of c also

belongs to C.
¤

That is, if C is cyclic,

• (a, b, c) ∈ C ⇒ (b, c, a) ∈ C;
• recursively so.
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We will study linear cyclic codes. Why?

• Cyclic code words are easily generated?

– They are, but that’s not the reason.

• Cyclic codes have a rich, complex structure which permits the

coding theorist and the engineer to:

1. understand precisely the performance and limitations of the

code, and

2. study classes and families of cyclic codes that have properties

specific to an application.
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Definition 2 For a cyclic code C,
(c0, c1, . . . cn−1) ∈ C ⇒ (cn−1, c0, . . . cn−2) ∈ C.

¤
• Let us represent a cyclic code word of length n by a polynomial of

degree n− 1:

c = (c0, c1, . . . , cn−1) ∈ C
c(x) = c0 + c1x + · · ·+ cn−1x

n−1 ∈ C

• or 2 equivalent notations for the same concept.

• So, in addition to c(x),

cn−1 + c0x + c1x
2 · · ·+ cn−2x

n−1 ∈ C
cn−2 + cn−1x + c0x

2 · · ·+ cn−3x
n−1 ∈ C

c1 + c2x + · · ·+ cn−1x
n−2 + c0x

n−1 ∈ C
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Write

c(x) = c0 + c1x + · · ·+ cn−1x
n−1.

xc(x) = c0x + c1x
2 + · · ·+ cn−2x

n−1 + cn−1x
n.

But, the cyclic shift of c(x) is

cn−1 + c0x + c1x
2 · · ·+ cn−2x

n−1.

Is there a way to derive the cyclic shift of c(x) from the polynomial

xc(x)?
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Yes!

• Divide xc(x) by xn − 1.

• The remainder is the cyclic shift of codeword c(x).

Proof: Straightforward algebra (Exercise). ¤
Temporarily, we write this remainder as < xc(x) >. Then,

c(x) = c0 + c1x + · · ·+ cn−1x
n−1 ∈ C

< xc(x) > = cn−1 + c0x + c1x
2 · · ·+ cn−2x

n−1.

< x2c(x) > = cn−2 + cn−1x + c0x
2 · · ·+ cn−3x

n−1.

...
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Theorem 1 The set of polynomials of degree n− 1 is closed under

addition, subtraction, and multiplication modulo xn − 1.

Proof: By construction. Work it out. ¤

• Such an algebraic structure is called a ring.

• To study the rich algebraic structures of cyclic codes, we need

some modern or abstract algebra.
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4.2 The Algebra of Cyclic Codes

4.2.1 Rings

Definition 3 A commutative ring is a set R with two operations ⊕
and ? such that:

• R is a commutative group under ⊕ ;

• R is closed under ? ;

• ? is commutative and associative: For a, b ∈ R,

(a ? b) ? c = a ? (b ? c);

• ? distributes over ⊕:

a ? (b⊕ c) = a ? b ⊕ a ? c

(d⊕ e) ? f = d ? f ⊕ e ? f ;

• If there is an identity e under ?, it is unique.

¤
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Ring Properties:

• Let O = the identity under ⊕ and E = the identity under ? (e.g.,

like 0 and 1.)

O ? a = a ?O = 0.

a ? (−b) = (−a) ? b = −(a ? b).

• The (multiplicitive) identity E in R is unique.

• The (multiplicitive) inverse (a−1)−1 of a−1 is a.

Exercise: Prove these.

Important Example:

The set R[x] of univariate polynomials with real coefficients is a

commutative ring with identity 1.
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Definition 4 An integral domain is a ring with a cancellation

property.

¤
e.g., Z is an integral domain, and:

ac = ad ⇒ c = d, ∀a 6= 0, c, d ∈ Z.

However, a−1 does not exist in Z.
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4.2.2 Fields

Definition 5 A field is a commutative ring in which every element

also has an inverse under the second operation ?.

¤
Note: In most cases, you can think of ⊕ and ? as “addition” and

“multiplication.”
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Examples:

• Q, R, and C are examples of infinite fields. (Exercise: find the

multiplicative inverse of a + jb in C.
• GF (q) is the finite field of q ∈ Z elements. (There are restrictions

on q as we shall see later.)

– GF (2) (Exercise: construct the tables.)

– GF (3) = {0, 1, 2}. (Exercise: construct the tables.)



c©2004, A. Brinton Cooper III 12

GF(4)

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

∗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

Exercise: Is this modulo 4 arithmetic?

Later: How to construct GF (q) for any allowed q = pm.
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4.2.1 Subfields

Definition 6 A subfield is a subset of a field which itself is a field

under the “inherited” operations.

¤
The original field is said to be an extension of the subfield.

Examples:

• Q (rationals) is a subfield of R (reals)

• R is a extension of Q.

• R is a subfield of C (complex).

• C is a extension of R.
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4.2.3 Polynomial Algebra and Galois Fields

4.2.3.1 The Integer Ring, Z

Since cyclic codewords are polynomials, an algebra of polynomials
will be helpful.

Definition 7 Let a, b ∈ Z.

• (a, b) 4= GCD(a, b) 4= largest d ∈ Z s.t.: d|a and d|b.
• LCM(a, b) 4= smallest m ∈ Z s.t.: a|m and b|m.

• a, b are said to be relatively prime if GCD(a, b) = 1

• a is said to be prime if divisible by 1 and a only.

¤
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The Division Algorithm of Algebra: For any a, b 6= 0,∈ Z, there

exist a quotient q and a remainder r, both in Z such that:

a = bq + r.

Lemma q and r are unique.

Proof:

• Suppose not. Then there are two quotients and remainders:

a = bq1 + r1

a = bq2 + r2

0 = b(q1 − q2) + (r1 − r2)

• Therefore, (r1 − r2) is an integer multiple of b.

• But r1 < b and r2 < b ⇒ contradiction.

¤
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Definition 8 When a = bq + r, we write:

Rb[a] 4= r.

¤
Definition 9 We say that

a ≡ r (b)

a = r mod b

¤
Theorem 2 For a, b, t ∈ Z,

Rt[a + b] = Rt[Rt[a] + Rt[b]]

Rt[ab] = Rt{Rt[a] ·Rt[b]}.

Proof: based upon the uniqueness of the remainder. ¤



c©2004, A. Brinton Cooper III 17

The division algorithm is used to find the GCD:

Theorem 3 (The Euclidean Algorithm) Let a < b ∈ Z. Then

d = GCD(a, b) can be computed by the iterative algorithm:

b = q1a + r1, 0 ≤ r1 < a

a = q2r1 + r2, 0 ≤ r2 < r1

r1 = q3r2 + r3, 0 ≤ r3 < r2

· · ·
rn−2 = qnrn−1 + rn, 0 ≤ rn < rn−1 (1)

rn−1 = qn+1rn

• Now, d|a, d|b ⇒ d|r1 ⇒ d|r2 · · · d|rn

• Also, rn|rn−1 ⇒ rn|rn−2 · · · rn|a ⇒ rn|b.
• Hence, rn|d and d|rn so d = rn. ¤
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Corollary: let a, b ∈ Z. Then there exist integers c and d such that

GCD(a, b) = ac + bd. (2)

Proof:

• From proof of Euclidean Algorithm, GCD(a, b) = rn

• Solve the linear equations (in the proof) for rn as a linear function

of a and b. ¤
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4.2.3.2 Constructing finite fields from Z

• Let q be a positive integer.

• Let Z/(q) = {0, 1, . . . , q − 1}, the integers modulo q.

– Z/(q) maps every integer in Z into an integer between 0 and

q − 1.

– Hence, it decomposes the ring Z of integers into q semi-infinite

cosets!

• For a, b ∈ Z/(q), define:

a + b
4= Rq[a + b] (3)

a · b 4= Rq[ab] (4)

Theorem 4 Z/(q) is a ring under the addition and multiplication

operations defined above.

Proof: Work through the axioms. ¤
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Definition 10 Z/(q) is called the ring of integers modulo q.

¤
Theorem 5 Z/(q) is a field if and only if q is a prime integer.

Proof: See, e.g., Blahut, Sect 4.2. ¤
• Hence, to construct a finite field GF (p) for any prime integer p,

form Z/(p).

• For certain nonprime values of q, a finite field GF (q) can also be

constructed.

• This requires the study of rings of polynomials.
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4.2.3.3 The Polynomial Ring

Definition 11 A polynomial over GF (q) is an expression

f(x) = f0 + f1x + f2x
2 + · · ·+ fn−1x

n−1,

where fi ∈ GF (q), i = 0, 1, 2, . . . , n− 1.

¤
• degree: deg[f(x)] = n− 1.

• deg[0] = −∞ by convention.

• f(x) is said to be monic whenever fn−1 = 1.

• equality:

f(x) = g(x) ⇔ fi = gi, i = 0, 1, · · · , n− 1.
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Residues in GF (q)[x] :

• Notice the analogies with residue theory in Z.

Definition 12 r(x) divides s(x), r(x)|s(x) ⇔ there exists

polynomial a(x) such that

a(x)r(x) = s(x)

¤
Definition 13 An irreducible polynomial p(x) is divisible only by

scalar α and by αp(x)

¤
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Definition 14 A prime polynomial is a monic, irreducible

polynomial of degree at least 1. ¤

Definition 15 The greatest common divisor GCD[r(x), s(x)] is the

monic polynomial of largest degree that divides each. ¤

Notation: The following notation is also used.

GCD[r(x), s(x)] = (r(x), s(x))

Definition 16 The least common multiple LCM [r(x), s(x)] is the

monic polynomial of smallest degree that is divisible by each. ¤
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Definition 17 r(x) and s(x) are said to be relatively prime or

coprime if

GCD[r(x), s(x)] = 1.

¤
Definition 18 The formal derivative of f(x) is:

((n− 1))fn−1x
n−2 + ((n− 2))fn−2x

n−2 + · · ·+ f1

where ((i)) =

i︷ ︸︸ ︷
1 + 1 + · · ·+ 1 is called an integer of the field.a ¤

Lemma: If r(x)|s(x) and if s(x)|r(x) then r(x) = ±s(x). ¤

aWhen there is no confusion, we will write i for ((i)).
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The Division Algorithm for Polynomials.

Theorem 6 For every pair of polynomials, b(x) 6= 0, and a(x), there

exist a unique pair of polynomials, Q(x) (quotient) and r(x)
(remainder) such that:

a(x) = Q(x)b(x) + r(x)

where deg[r(x)] < deg[b(x)].

Proof: Similar to of the Division Algorithm for Integers; replace the

integer value with the degree of the polynomial (Blahut, p. 74). ¤
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Recall:

a(x) = Q(x)b(x) + r(x)

Definition 19 We call Rb(x)[a(x)] = r(x) the remainder or residue

of a(x) modulo b(x) and write

r(x) ≡ a(x) mod b(x),

where deg[r(x)] < deg[b(x)].

¤
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Theorem 7 Let d(x) = g(x) · h(x). Then, for any polynomial a(x),

Rg(x)[a(x)] = Rg(x){Rd(x)[a(x)]}

Proof: Divide a(x) by d(x):

a(x) = Q1(x)d(x) + Rd(x)[a(x)]

= Q1(x)g(x)h(x) + Rd(x)[a(x)]

and

Rg(x)[a(x)] = Rg(x){Rd(x)[a(x)]}
¤
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Theorem 8

Rd(x)[a(x) + b(x)] = Rd(x)[a(x)] + Rd(x)[b(x)]

Rd(x)[a(x) · b(x)] = Rd(x){Rd(x)[a(x)] ·Rd(x)[b(x)]}

Proof: As with the residues, use the division algorithm and equate the

remainders. (Blahut, p. 74) ¤
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The Unique Factorization Theorem for Polynomials

Theorem 9 Any monic polynomial over a field can be uniquely

factored into monic irreducible polynomials over that field.

Proof: Blahut, p.75. This generalizes the well-known UFT for integers:

a ∈ Z⇒ a = pm1
1 · pm2

2 · · · pmn
n

for some finite n. ¤
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Theorem 10 (The Euclidean Algorithm for Polynomials.) Let

a(x), b(x) ⊂ GF (q)[x] and deg[a(x)] < deg[b(x)]. Then

GCD[a(x), b(x)] can be found by the iterative algorithm:

b(x) = Q1(x)a(x) + r1(x)

a(x) = Q2(x)r1(x) + r2(x)

r1(x) = Q3(x)r2(x) + r3(x)

· · ·
rn−2(x) = Qn(x)rn−1(x) + rn(x)

rn(x) = Qn+1(x)rn(x)

and α ·GCD[a(x), b(x)] = rn(x), where α ∈ GF (q).
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Proof: of Euclidean Theorem for Polynomials parallels that for the

integers (Blahut, p.76). ¤

Theorem 11 (The Fundamental Theorem of Algebra) Let

deg[f(x)] = n. Then, f(x) has at most n zeros and f(α) = 0 if and

only if (x− α)|f(x).

Proof: See text. ¤



c©2004, A. Brinton Cooper III 32

4.2.3.4 Finite Fields from Polynomial Rings

• By analogy with Z/(q), we use quotients in GF (q)[x] to construct

finite fields.

• This permits construction of fields not possible using integer

residues.

• For notational simplicity, let Fq
4= GF (q). be any finite field

having q elements.

Now, consider p(x) ∈ Fq[x] with deg[p(x)] > 0.
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Definition 20 The polynomials modulo p(x) over Fq:

Fq[x]/(p(x)) 4= {f(x) : s.t. deg[f(x)] < deg[p(x)]}

¤
Now divide:

g(x) = Qg(x) · p(x) + rg(x)

h(x) = Qh(x) · p(x) + rh(x)

Then

• rg(x), rh(x) ∈ Fq[x]/(p(x)).

• If rg(x) = rh(x), then we write

g(x) ≡ h(x) (mod p(x))

even if g(x) 6= h(x).
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Theorem 12 Fq[x]/(p(x)) is a ring.

Proof: Test the addition and multiplication axioms mod p(x). ¤
Theorem 13 Fq[x]/(p(x)) is a field if and only if p(x) is irreducible.

Proof: Many texts. ¤
• Clearly Fq[x] contains qm elements where m = deg[p(x)].

• We call this field, GF (qm) or Fqm .

• So any prime polynomial p(x) can generate a field.
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Compare:

• p(x) ∈ Fq[x].

• Fq[x]/(p(x)) is Fqm ≡ GF (qm) for prime p(x).

• Fqm is an extension field of Fq.

• Fq ≡ GF (q) is a subfield of Fqm ≡ GF (qm).
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Example: Let p(x) = x2 + x + 1

• p(x) is prime over F2 (verify). So,

• F2(x)/(p(x)) is a field with 22 = 4 elements and

– “ + ” and “× ” mod p(x)

– Members (polynomials of degree < 2):

0 0

1 x

x x1

x + 1 x2

Important note: Although elements of nonprime fields are

polynomials, now that we can write down the + and × tables, we can

use any convenient notation. For example, in GF (8) we can use the

symbols 0,1,...,7 so long as we don’t confuse the field with Z8.
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Lemma: The nonzero elements of GF (q) form a multiplicative group.

Proof: Obvious ¤.

• Suppose 1, β, β2, · · · ∈ GF (q) where order of β = m.

• Then, m | q − 1 (from coset decomposition).

Definition 21 An element of GF (q) of order q − 1 is a primitive

element of GF (q) ¤
Lemma: If α is primitive in GF (q), then {1, α, α2, . . . , αq−2} are all

the nonzero elements of GF (q).

Proof: From definition of primitive. ¤
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Theorem 14 Let {β1, β2, · · · , βq−1} be the non-zero elements of

GF (q). Then

xq−1 − 1 = (x− β1)(x− β2) · · · (x− βq−1)

Proof:

• For 1 ≤ j ≤ (q − 1) and βj ∈ GF (q)

mj | q − 1.

Therefore

βq−1
j = (βmj

j )
q−1
mj = (1)

q−1
mj = 1

so that βj is a zero of xq−1 − 1. ¤
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Theorem 15 GF (q) always contains a primitive element.

Proof:

• The non-zero elements form a cyclic group.

• Therefore, there is an element of order q − 1.

¤
Definition 22 A primitive polynomial is an irreducible polynomial

p(x) of degree m over GF (q) having a primitive element of GF (qm)
as a root.

¤
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This definition means that, if:

1. p(x) is irreducible over GF (q),

2. α is primitive in GF (qm), and

3. p(α) = 0,

then,

• p(x) is a primitive polynomial and

αqm−1 = 1.
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Example of generating a nonprime field

Let

• p(x) = x4 + x + 1 ∈ GF (2) be primitive (can verify – How?).

• α be primitive in GF (24) and p(α) = 0. Then,

α4 + α + 1 = 0 (5)

From (5) we can write:

α4 = 1 + α

α5 = α + α2

etc. The complete set of powers of α follows.
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α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = 1 + α

α5 = α + α2

α6 = α2 + α3

α7 = 1 + α + α3

α8 = 1 + α2

α9 = α + α3

α10 = 1 + α + α2

α11 = α + α2 + α3

α12 = 1 + α + α2 + α3
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α13 = 1 + α2 + α3

α14 = 1 + α3

α15 = 1

Exercise: Generate GF (24) using a different primitive polynomial. Do

you get the same field?
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4.2.3.5 The Structure of GF (q)

• We seek to do “arithmetic” in GF (q).

Definition 23 The characteristic of GF (q) is the number of

elements in its smallest subfield.

¤
Example: The characteristic of GF (16) is 2.
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Theorem 16 Every finite field GF (q) contains a unique, smallest

subfield that contains a prime number of elements.

Proof:

• Every GF (q) contains 0 and 1.

• Let G
4= {0, 1, 2, . . . , r − 1}, where i = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

i times

,

– So G is a cyclic additive, finite subgroup of GF (q) of order r.

– Hence, addition in G is modulo r.

– For i, j ∈ G,

i · j = (1 + 1 + · · ·+ 1) · j
= (j + j + · · ·+ j).

– Therefore “× ” is modulo r as well.
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• Since G is

– cyclic,

– of order r

– having modulo r operations “ + ” and “× ”,

• then it is by an earlier proof, a prime field of size r.

• Since it is prime, it has no subfield, and the theorem is proved.

¤
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Corollary: The characteristic of any Galois field is prime.

Proof: Follows immediately from the previous construction

.

Corollary: In a field of characteristic p, (a + b)p = ap + bp.

Proof:

(a + b)p = ap +
(

p

1

)
ap−1b +

(
p

2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp

But (
p

j

)
= 0 mod p ∀j,

and the lemma is proved. ¤



c©2004, A. Brinton Cooper III 48

Example (continued)

Arithmetic in GF (24) is performed in this manner:

• (×): αj × αk = αj+k ( mod 24−1).

• (+): From the table,

α5 + α9 = α + α2 + α + α3

= α2 + α3

= α6.
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More on Extension Fields

• Let GF (q) be a subfield of GF (Q) and β ∈ GF (Q). Then,

Definition 24 The minimal polynomial mβ(x) of β over GF (q) is

the prime polynomial of smallest degree over GF (q) for which

mβ(β) = 0. ¤
Theorem 17 Two-part theorem:

• I: Every β ∈ GF (Q) has a unique minimal polynomial over GF (q).

• II: If m(x) is the minimal polynomial of β and if g(β) = 0, then

m(x)|g(x).

Proof: See text. ¤
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Corollary: If m1(x), · · · ,mk(x) are the minimal polynomials over

GF (q) for all the elements of GF (Q), then

xQ − x =
k∏

i=1

mi(x).

Proof: β is always a zero of xQ − x, so this is true by UFT. ¤
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Theorem 18 For any g(x) over GF (q), there exists an extension field

GF (Q) in which g(x) =
∏

(x− βi).

Proof: See text. ¤

Definition 25 A splitting field of g(x) ∈ Fq[x] is any extension

GF (Q) of GF (q) in which g(x) factors into linear and constant terms

only.

¤
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Theorem 19 Let α be primtive in GF (Q), an extension of GF (q)
and let deg[mα(x)] = m. Then

• Q = qm, and

• Any β ∈ GF (Q) can be written as

β = bm−1α
m−1 + · · ·+ b1α + b0, bi ∈ GF (q).

Note: Therefore, GF (Q) is a vector space over GF (q).

Proof: See text. ¤
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The following follow directly from the theorem and are

computationally useful.

• For every prime number p and positive integer m, there exists a

finite field of size pm.

• In GF (q), q = pm, (a + b)q = aq + bq.

• The smallest splitting field of the polynomial xpm − x has exactly

pm elements.
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4.3 Viewing Cyclic codes from Extension Fields -

An Example

• For α primitive in GF (23), let

p(x) = x3 + x + 1

p(α) = 0

H =
[
α0, α1, α2, α3, α4, α5, α6

]
.

• Expanding powers of α, write H in binary form:

H =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1




i.e., α3 = 1 + α, etc.
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• Let H be check matrix of some binary code C.
• For c ∈ C,

c ·HT = 0.

n−1∑

i=0

ciα
i = 0

c(α) = 0

which defines a polynomial c(x) having α as a root.

• Thus we establish the correspondence between codewords and

polynomials

• Note: H is the check matrix of the binary, Hamming (7, 4) code.
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In general,

• Let H be (n− k)× n q-ary matrix s.t. m|(n− k).

• Represent the first m rows of H as a single row of symbols from

GF (qm), (β11, . . . , β1n). Repeat for every set of m rows.

H =




β11 β12 · · · β1n

β11 β12 · · · β2n

...

βρ1 βρ2 · · · βρn




where

ρ =
n− k

m

This is not new, merely more compact. However,...
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• Consider the special case where Bij = γj−1
i .

• Then the ith row of H can be written: γ0
i , γ1

i , . . . , γn−1
i , for

– i = 1, . . . , ρ and

– n = qm − 1.

H =




γ0
1 γ1

1 · · · γn−1
1

γ0
2

...

γ0
ρ γn−1

ρ



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• For some c ∈ C

cHT = 0
n−1∑

i=1

ciγ
i
j = 0, j = 1, · · · , ρ

• So C is all c(x) of degree ≤ n− 1 s.t. c(γi) = 0, i = 1, . . . , ρ

• and H is the check matrix of the code C, where

C = {c(x) s.t., deg[c(x)] ≤ n, c(γj) = 0, j = 1, . . . , ρ.

• ⇒ But we have not shown that C is cyclic. ⇐
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4.4 Cyclic Codes, Formally

4.4.1 Algebraic Description of Cyclic Codes

Definition 26 Fq[x] 4= the ring of polynomials over GF (q).

¤
Definition 27 Fq[x]/(xn − 1) 4= the ring of polynomials over GF (q)
mod (xn − 1).

¤
Definition 28 A subset I of any ring R is an ideal if

• it is a subgroup of the additive group of R, and

• r ∈ R and a ∈ I ⇒ ar ∈ I.

¤
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Clearly c(x) ∈ Fq[x]/(xn − 1) ⇒ deg[c(x)] ≤ n− 1

and,

Lemma: xc(x) ∈ Fq[x]/(xn − 1).

Proof: See text. ¤
So,

• Associate n-tuple c ∈ sC with c(x) ∈ Fq[x]/(xn − 1).

• All such codewords c, then, are cyclic.

• xc(x) is the cyclic shift of c(x).

Notation: C represents both the codewords {c} and the polynomials

{c(x)}.
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Theorem 20 C is a q-ary linear cyclic code of length n if and only if

the {c(x)} ∈ C form an ideal in Fq[x]/(xn − 1).

Simply put, a cyclic code of block length n is an ideal in the ring of

polynomials modulo xn − 1.

Proof:

Case i (if): Assume 1 and 2 are true. Then C is:

• closed under +.

• closed under mult by any scalar (where a(x) is a “scalar.”)

• therefore, is a subspace, therefore a code.

• If a(x) = x, C is cyclic.
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Case ii (only if): Assume C is a cyclic code. Then it is

• a subspace;

• closed under

– +

– multiplication by a scalar, specifically -

– multiplication by x.

• and, therefore, under multiplication by arbitrary polynomial a(x).

¤
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4.4.2 Generating Cyclic Codes

Lemma: Given an ideal I of Fq[x]/(xn − 1). The non-zero monic

polynomial g(x) of smallest degree in I is unique.

Proof:

• Let deg[g(x)] = r.

• Select α ∈ Fq so that αg(x) is monic. Note that αg(x) ∈ I .

• Suppose another monic f(x) ∈ I with deg[f(x)] = r.

• Then f(x)− g(x) ∈ I.

• But deg[f(x)− g(x)] ≤ deg[g(x)].

– This contradicts our choice of g(x).

• Therefore g(x) is as claimed. ¤
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Definition 29 : The non-zero polynomial g(x) of smallest degree in

ideal I is called the generator polynomial of the ideal.

¤
Theorem 21 A cyclic code consists of all multiples of its generator

polynomial g(x) by polynomials a(x) of degree ≤ k − 1.
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Proof:

• If g(x) ∈ C, then a(x)g(x) ∈ C ∀a(x).

• Suppose c(x) ∈ C, and suppose:

c(x) = Q(x)g(x) + s(x).

• But c(x) ∈ C, and Q(x)g(x) ∈ C ⇒ s(x) ∈ C. But

deg[s(x)] < deg[q(x)]

Yet g(x) is the polynomial of smallest degree in C. Hence,

s(x) ≡ 0 ¤
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Theorem 22 : A cyclic code C of length n and generator polynomial

g(x) exists if and only if g(x)|(xn − 1).

Proof:

• Suppose C =< g(x) > but

xn − 1 = Q(x)g(x) + s(x), deg[s(x) < deg[g(x)]

Rxn−1(xn − 1) = 0 = Rxn−1[Q(x)g(x)] + Rxn−1[s(x)]

= Rxn−1[Q(x)g(x)] + s(x)

• Since Rxn−1[Q(x)g(x)] ∈ C, then s(x) ∈ C.
• But: deg[s(x)] < deg[g(x)], so s(x) ≡ 0 and g(x)|(xn − 1).

• Conversely, every g(x)|(xn − 1) can generate a code.

¤
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4.4.3 Parity Check Polynomial

Definition 30 : Let xn − 1 = g(x)h(x). If g(x) generates a code,

then we call h(x) the parity check polynomial of the code.

¤

Lemma: For every c(x) ∈ C

Rxn−1[h(x)c(x)] = 0

Proof:

• For some a(x)

h(x)c(x) = h(x)g(x)a(x) = (xn − 1)a(x)

¤
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4.4.4 Error Polynomial

• Transmit q-ary codeword c(x) ∈ C over noisy channel.

• Receive vector v(x)

• Both are in Fq[x]/(xn − 1).

Definition 31 : The error polynomial is the difference v(x)− c(x)
between received and transmitted polynomials.

¤
i.e.,

v(x) = c(x) + e(x)

This is a model for the class of additive noise channels.
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Definition 32 : The information encoded by C is represented by a

polynomial a(x), deg[a(x)] ≤ k − 1.

¤
• c(x) = a(x)g(x) mod xn − 1

• C = {c(x) = a(x)g(x)} is not systematic in (try it!).

Lemma: c(x) belongs to a systematic, cyclic code if

c(x) = xn−ka(x) + t(x)

where t(x) is chosen so that c(x) ≡ 0 mod xn − 1.

Proof: Exercise ¤
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4.5 Explicit Constructions of Cyclic Codes

• Objective: To find an explicit construction of g(x) for cyclic code

of length n.

Consider the prime factorization:

xn − 1 = f1(x)f2(x) · · · fs(x)

=
s∏

i=1

fi(x).

• Select some factors of xn − 1:

g(x) = fi1(x) · fi2(x) · · · fij
(x), j = 1, 2, · · · , s.
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• How many such g(x) can we form?

– 2s possibilities;

– Eliminate choosing no factors.

– Eliminate choosing all factors.

– ⇒ 2s − 2 possiblities.
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4.5.1 Finding a Generator Polynomial g(x)

We consider two ways to specify g(x), by its factors and by its roots.

xqm−1 − 1 =
∏

fi(x) (6)

• This prime factorization is unique.

• βj 6= 0 ∈ GF (qm) is a root of (6).

• And we can factor each fi(x) in GF (qm):

xqm−1 − 1 =
s∏

i=1

fi(x) =
qm−1∏

j=1

(x− βj)

• Each βρ will be a zero of exactly one such polynomial.

• Each fi(x) is the polynomial of smallest degree such that

fi(βj) = 0.
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Theorem 23 : A polynomial c(x) is a codeword in a primitive code if

and only if all the roots of g(x) are also roots of c(x).
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Proof:

Let {βj} be the set of roots of g(x).

• Every codeword c(x) = a(x)g(x). Therefore

c(βj) = a(βj)g(βj) = 0.

• Conversely let c(βj) = 0. Divide by mβj (x):

c(x) = Q(x)mβj
(x) + r(x)

c(βj) = 0 = Q(βj)mβj (βj) + s(βj)

s(x) = 0

because deg[s(x)] < deg[mβj (x)]. ¤
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Example: Find all binary cyclic codes of length n = 15.

x15 − 1 = (x + 1)(x2 + x + 1)(x4 + x + 1)

·(x4 + x3 + 1)(x4 + x3 + x2 + x + 1)

= f1(x)f2(x)f3(x)f4(x)f5(x)

• There are 5 factors, so 25 − 2 nontrivial binary cyclic codes.
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• Example:(continued) Let g(x) = f4(x)f5(x):

g(x) = x8 + x4 + x2 + x + 1

– f4(x) is primitive (verify), so one of its roots α is primitive in

GF (24).

– Also α3 is a root of f5(x) (verify).

– Therefore the roots of g(x) include α, α3.

– deg[g(x)] = 8 = n− k, so k = 7.

– wH [g(x)] = 5 (see above) so dmin ≤ 5.



c©2004, A. Brinton Cooper III 77

• Generally, if we want g(βi) = 0, i = 1, · · · , r:

– we must find mβ1(x), · · · ,mβr (x).

– Set

g(x) = LCM [mβ1(x), · · · ,mβr (x)]

and g(x) is as desired.

• How do we find mβj
? (See next Theorem.)

Exercise: If deg[mβ(x)] = h and mβ(β) = 0 what are the other h− 1
other zeros of mβ(x)?
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Theorem 24 : If β is an element of GF (qm) with minimal polynomial

mβ(x) over GF (q), then mβ(x) is also the minimal polynomial of βq.

Proof: Text. ¤
Definition 33 : Two elements of GF (qm) having the same minimal

polynomial over GF (q) are said to be conjugates with respect to

GF (q).

¤
• So β and βq are conjugates by the theorem.

• So are βq2
, · · · , βqr−1

where r is the smallest integer such that

βqr

= β.

• This leads directly to . . .
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Theorem 25 mβ(x) = (x− β)(x− β2) · · · (x− βqr−1
).

Proof:

• All the conjugates of β are roots.

• Must show that the coefficients of mβ(x) lie in GF (q).

[mβ(x)]q = (x− β)q · · · (x− βqr−1
)q

= (xq − βq) · · · (xq − βqr

)

= (xq − βq) · · · (xq − β)

= mβ(xq)

=
∑

miβxiq

But also, by the theorem:

[mβ(x)]q =
∑

mq
iβxiq

Therefore mq
iβ = miβ . ¤
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Summary of foregoing:

• Given a field GF (q), select blocklength n.

• Using primitive element, find minimal polynomial and conjugate

roots.

• Add additional roots if needed to obtain desired k.

• Write down g(x).
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4.5.2 Non-primitive Cyclic Codes.

Definition 34 For a code over GF (q), a blocklength of the form

n = qm − 1 is called a primitive blocklength. ¤
A cyclic code of such length is called a primitive cyclic code.

Lemma: n divides qm − 1 for some m. ¤
Theorem 26 : Given GF (q) and integer n relatively prime to q.

Then there exists an integer m for which

(xn − 1)|(xqm−1 − 1)

¤
Then xn − 1 has m distinct roots in GF (qm).
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4.5.3 Summary: How to Describe any Cyclic Code

• A cyclic code of (given) length n over GF (q) is generated by g(x)
where

g(x)|(xn − 1)

• To get g(x), select primitive element α ∈ GF (qm), where

qm − 1 = nb

αnb = 1

• Determine the minimal polynomial mα(x) over GF (q).

• Then mα(x) | g(x).

• For lower rate code, find another root, α̂ and write

g(x) = LCM (mα(x),mα̂(x)) .

Note: We can (and will) say more about how to design C to have

given rate or minimum distance.
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4.6 Matrix Description of Cyclic Codes

4.6.1 Formal Method

• Let g(x) ∈ Fq[x] have zeros γi, i = 1, . . . , r in GF (qm).

• If c(x) is a codeword, c(γi) = 0, i = 1, . . . , r, or

n−1∑

j=0

cjγ
j
i = 0, i = 1, . . . , r.

• Since there is H for which cHT = 0, this suggests:

HT =




γ0
1 γ0

2 · · · γ0
r

γ1
1 γ1

2 · · · γ1
r

γ2
1 γ2

2 · · · γ2
r

· · ·
γn−1
1 γn−1

2 · · · γn−1
r




over GF (qm).
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• Can write γj
i = (γi0, γi1, . . . , γi(n−1)), γiσ ∈ GF (q).

• Then replace each element in H by a column m−tuple over

GF (q).

• This gives a matrix having dimensions rm× n over GF (q).

• Note: Remove linearly dependent rows.

• This gives H matrix over GF (q).

This is a cumbersome algorithm.
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4.6.2 A Direct Method

• Use the generator g(x):

c(x) = a(x)g(x)

where,

g(x) =
n−k∑

j=0

gjx
j

a(x) =
k−1∑

i=0

aix
i

• Consider coefficients of c = aG:
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c(x) = a(x)g(x) =
k−1∑

i=0

n−k∑

j=0

aigjx
i+j

= a0g0 + (a1g0 + a0g1)x + · · ·
+(ak−2gn−k + ak−1gn−k−1)xn−2 + ak−1gn−kxn−1

c = (ak−1gn−k, (ak−2gn−k + ak−1gn−k−1), · · · (a1g0 + a0g1), a0g0),

(a0, a1, · · · , ak−1)




0 0 · · · g1 g0

0 0 · · · g0 0
...

0 gn−k · · · 0 0

gn−k gn−k−1 · · · 0 0



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Or,

G =




0 0 · · · g1 g0

0 0 · · · g0 0
...

0 gn−k · · · 0 0

gn−k gn−k−1 · · · 0 0



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• Recall xn − 1 = g(x)h(x)

• For any codeword c(x)

Rxn−1[c(x)h(x)] = 0

• As above, we can use h(x) to write:

H =




0 0 0 · · · h0 h1 · · · hk−1 hk

· · · · · ·
0 h0 h1 · · · hk−1 hk 0 · · · 0

h0 h1 h2 · · · 0 0 · · · 0



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• To show that GHT = 0:

– The product of sth row of G and tth column of HT has the form

ur =
r∑

i=0

gr−ihi = 0, 1 ≤ r ≤ n− 1,

– and ur is the coefficient of xr in g(x) · h(x) = xn − 1.

• Hence, ur = 0 unless r = 0 or n.

Hence, GH = 0 and H is the parity check matrix.
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4.6.3 The Dual Code

• The check matrix H of the code generated by G has the form of

a generator matrix for a cyclic code.

• Therefore, the dual of a cyclic code is a cyclic code.

• Examining the order of coefficients in H shows that the dual code

is generated by

h̃(x) = xkh(x−1)

STOP


