4.0 Cyclic Codes

4.1 Informal Definition

Definition 1 A code C is a cyclic code if every cyclic shift of c also belongs to C.

That is, if \mathcal{C} is cyclic,

- $(a, b, c) \in \mathcal{C} \Rightarrow (b, c, a) \in \mathcal{C};$
- recursively so.

We will study linear cyclic codes. Why?

- Cyclic code words are easily generated?
 - They are, but *that's not the reason*.
- Cyclic codes have a **rich, complex structure** which permits the coding theorist and the engineer to:
 - 1. understand precisely the *performance* and *limitations* of the code, and
 - 2. study classes and families of cyclic codes that have properties specific to an application.

Definition 2 For a cyclic code C,

$$(c_0, c_1, \ldots c_{n-1}) \in \mathcal{C} \Rightarrow (c_{n-1}, c_0, \ldots c_{n-2}) \in \mathcal{C}.$$

 Let us represent a cyclic code word of length n by a polynomial of degree n − 1:

$$\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) \in \mathcal{C}$$
$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in \mathcal{C}$$

- or 2 equivalent notations for the same concept.
- So, in addition to c(x),

$$c_{n-1} + c_0 x + c_1 x^2 \dots + c_{n-2} x^{n-1} \in \mathcal{C}$$

$$c_{n-2} + c_{n-1} x + c_0 x^2 \dots + c_{n-3} x^{n-1} \in \mathcal{C}$$

$$c_1 + c_2 x + \dots + c_{n-1} x^{n-2} + c_0 x^{n-1} \in \mathcal{C}$$

Write

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}.$$

$$xc(x) = c_0 x + c_1 x^2 + \dots + c_{n-2} x^{n-1} + c_{n-1} x^n.$$

But, the cyclic shift of c(x) is

$$c_{n-1} + c_0 x + c_1 x^2 \dots + c_{n-2} x^{n-1}$$
.

Is there a way to derive the cyclic shift of c(x) from the polynomial xc(x)?

Yes!

- Divide xc(x) by $x^n 1$.
- The remainder is the cyclic shift of codeword c(x).

Proof: Straightforward algebra (Exercise).

Temporarily, we write this remainder as $\langle xc(x) \rangle$. Then,

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in \mathcal{C}$$

$$< xc(x) > = c_{n-1} + c_0 x + c_1 x^2 \dots + c_{n-2} x^{n-1}.$$

$$< x^2 c(x) > = c_{n-2} + c_{n-1} x + c_0 x^2 \dots + c_{n-3} x^{n-1}.$$

Theorem 1 The set of polynomials of degree n - 1 is closed under addition, subtraction, and multiplication modulo $x^n - 1$.

Proof: By construction. Work it out.

- Such an algebraic structure is called a ring.
- To study the rich algebraic structures of cyclic codes, we need some **modern** or **abstract** algebra.

4.2 The Algebra of Cyclic Codes 4.2.1 Rings

Definition 3 A commutative ring is a set \mathbf{R} with two operations \oplus and \star such that:

- ${f R}$ is a commutative group under \oplus ;
- ${f R}$ is closed under \star ;
- \star is commutative and associative: For $a, b \in \mathbf{R}$, $(a \star b) \star c = a \star (b \star c);$
- \star distributes over \oplus :

$$a \star (b \oplus c) = a \star b \oplus a \star c$$
$$(d \oplus e) \star f = d \star f \oplus e \star f;$$

• If there is an identity e under \star , it is unique.

Ring Properties:

Let O = the identity under ⊕ and E = the identity under ★ (e.g., like 0 and 1.)

$$\mathcal{O} \star a = a \star \mathcal{O} = 0.$$
$$a \star (-b) = (-a) \star b = -(a \star b).$$

- The (multiplicitive) identity ${\cal E}$ in ${\bf R}$ is unique.
- The (multiplicitive) inverse $(a^{-1})^{-1}$ of a^{-1} is a.

Exercise: Prove these.

Important Example:

The set $\mathbb{R}[x]$ of univariate polynomials with real coefficients is a commutative ring with identity 1.

Definition 4 An **integral domain** is a ring with a **cancellation property**.

e.g., \mathbb{Z} is an integral domain, and:

$$ac = ad \Rightarrow c = d, \ \forall a \neq 0, \ c, d \in \mathbb{Z}.$$

However, a^{-1} does *not* exist in \mathbb{Z} .

4.2.2 Fields

Definition 5 A field is a commutative ring in which every element also has an inverse under the second operation \star .

Note: In most cases, you can think of \oplus and \star as "addition" and "multiplication."

Examples:

- Q, ℝ, and C are examples of *infinite* fields. (Exercise: find the multiplicative inverse of *a* + *jb* in *C*.
- GF(q) is the finite field of q ∈ Z elements. (There are restrictions on q as we shall see later.)
 - GF(2) (**Exercise:** construct the tables.)
 - $-GF(3) = \{0, 1, 2\}.$ (Exercise: construct the tables.)

Exercise: Is this modulo 4 arithmetic?

Later: How to construct GF(q) for any allowed $q = p^m$.

4.2.1 Subfields

Definition 6 A subfield is a subset of a field which itself is a field under the "inherited" operations.

The original field is said to be an **extension** of the subfield.

Examples:

- \mathbb{Q} (rationals) is a subfield of \mathbb{R} (reals)
- \mathbb{R} is a extension of \mathbb{Q} .
- \mathbb{R} is a subfield of \mathbb{C} (complex).
- \mathbb{C} is a extension of \mathbb{R} .

4.2.3 Polynomial Algebra and Galois Fields

4.2.3.1 The Integer Ring, $\mathbb Z$

Since cyclic codewords are polynomials, an algebra *of* polynomials *will be helpful.*

Definition 7 Let $a, b \in \mathbb{Z}$.

- $(a,b) \triangleq \operatorname{GCD}(a,b) \triangleq \text{ largest } d \in \mathbb{Z} \text{ s.t.: } d|a \text{ and } d|b.$
- $\operatorname{LCM}(a, b) \stackrel{\scriptscriptstyle \triangle}{=}$ smallest $m \in \mathbb{Z}$ s.t.: a | m and b | m.
- a, b are said to be relatively prime if GCD(a, b) = 1
- a is said to be **prime** if divisible by 1 and a only.

The Division Algorithm of Algebra: For any $a, b \neq 0, \in \mathbb{Z}$, there exist a quotient q and a remainder r, both in \mathbb{Z} such that:

$$a = bq + r.$$

Lemma q and r are unique. Proof:

• Suppose not. Then there are two quotients and remainders:

$$a = bq_1 + r_1$$

$$a = bq_2 + r_2$$

$$0 = b(q_1 - q_2) + (r_1 - r_2)$$

- Therefore, $(r_1 r_2)$ is an integer multiple of b.
- But $r_1 < b$ and $r_2 < b \Rightarrow$ contradiction.

Definition 8 When a = bq + r, we write: $R_b[a] \triangleq r.$

Definition 9 We say that

 $a \equiv r (b)$ $a = r \mod b$

Theorem 2 For $a, b, t \in \mathbb{Z}$,

$$R_t[a+b] = R_t[R_t[a] + R_t[b]]$$
$$R_t[ab] = R_t\{R_t[a] \cdot R_t[b]\}.$$

Proof: based upon the uniqueness of the remainder.

The division algorithm is used to find the GCD:

Theorem 3 (The Euclidean Algorithm) Let $a < b \in \mathbb{Z}$. Then d = GCD(a, b) can be computed by the iterative algorithm:

$$b = q_{1}a + r_{1}, \ 0 \le r_{1} < a$$

$$a = q_{2}r_{1} + r_{2}, \ 0 \le r_{2} < r_{1}$$

$$r_{1} = q_{3}r_{2} + r_{3}, \ 0 \le r_{3} < r_{2}$$
...
$$r_{n-2} = q_{n}r_{n-1} + r_{n}, \ 0 \le r_{n} < r_{n-1} \qquad (1)$$

$$r_{n-1} = q_{n+1}r_{n}$$

- Now, $d|a, d|b \Rightarrow d|r_1 \Rightarrow d|r_2 \cdots d|r_n$
- Also, $r_n | r_{n-1} \Rightarrow r_n | r_{n-2} \cdots r_n | a \Rightarrow r_n | b$.
- Hence, $r_n|d$ and $d|r_n$ so $d = r_n$.

Corollary: *let* $a, b \in \mathbb{Z}$ *. Then there exist integers* c *and* d *such that*

$$GCD(a,b) = ac + bd.$$
⁽²⁾

Proof:

- From proof of Euclidean Algorithm, $GCD(a, b) = r_n$
- Solve the linear equations (in the proof) for r_n as a linear function of a and b.

4.2.3.2 Constructing finite fields from $\ensuremath{\mathbb{Z}}$

- Let q be a positive integer.
- Let $\mathbb{Z}/(q) = \{0, 1, \dots, q-1\}$, the integers modulo q.
 - $-\mathbb{Z}/(q)$ maps every integer in \mathbb{Z} into an integer between 0 and q-1.
 - Hence, it decomposes the ring $\mathbb Z$ of integers into q semi-infinite cosets!
- For $a, b \in \mathbb{Z}/(q)$, define:

$$a+b \stackrel{\triangle}{=} R_q[a+b] \tag{3}$$

$$a \cdot b \stackrel{\triangle}{=} R_q[ab]$$
 (4)

Theorem 4 $\mathbb{Z}/(q)$ is a ring under the addition and multiplication operations defined above.

Proof: Work through the axioms.

Definition 10 $\mathbb{Z}/(q)$ is called the ring of integers modulo q.

Theorem 5 $\mathbb{Z}/(q)$ is a field if and only if q is a prime integer.

Proof: See, e.g., Blahut, Sect 4.2.

- Hence, to construct a finite field GF(p) for any prime integer p, form Z/(p).
- For certain nonprime values of q, a finite field GF(q) can also be constructed.
- This requires the study of *rings of polynomials*.

- degree: $\operatorname{deg}[j(x)] = n$ 1.
- $deg[0] = -\infty$ by convention.
- f(x) is said to be **monic** whenever $f_{n-1} = 1$.
- equality:

$$f(x) = g(x) \Leftrightarrow f_i = g_i, \ i = 0, 1, \cdots, n-1.$$

Residues in GF(q)[x] :

• Notice the analogies with residue theory in \mathbb{Z} .

Definition 12 r(x) divides s(x), $r(x)|s(x) \Leftrightarrow$ there exists polynomial a(x) such that

$$a(x)r(x) = s(x)$$

Definition 13 An irreducible polynomial p(x) is divisible only by scalar α and by $\alpha p(x)$

Definition 14 A prime polynomial is a monic, irreducible polynomial of degree at least 1.

Definition 15 The greatest common divisor GCD[r(x), s(x)] is the monic polynomial of largest degree that divides each.

Notation: The following notation is also used.

GCD[r(x), s(x)] = (r(x), s(x))

Definition 16 The least common multiple LCM[r(x), s(x)] is the monic polynomial of smallest degree that is divisible by each.

Definition 17 r(x) and s(x) are said to be relatively prime or coprime if

GCD[r(x), s(x)] = 1.

Definition 18 The formal derivative of f(x) is:

$$((n-1))f_{n-1}x^{n-2} + ((n-2))f_{n-2}x^{n-2} + \dots + f_1$$

where $((i)) = \overbrace{1+1+\cdots+1}^{i}$ is called an integer of the field.^a Lemma: If r(x)|s(x) and if s(x)|r(x) then $r(x) = \pm s(x)$.

^aWhen there is no confusion, we will write *i* for ((i)).

The Division Algorithm for Polynomials.

Theorem 6 For every pair of polynomials, $b(x) \neq 0$, and a(x), there exist a unique pair of polynomials, Q(x) (quotient) and r(x) (remainder) such that:

$$a(x) = Q(x)b(x) + r(x)$$

where $\deg[r(x)] < \deg[b(x)]$.

Proof: Similar to of the Division Algorithm for Integers; replace the integer value with the degree of the polynomial (Blahut, p. 74).

Recall:

$$a(x) = Q(x)b(x) + r(x)$$

Definition 19 We call $R_{b(x)}[a(x)] = r(x)$ the remainder or residue of a(x) modulo b(x) and write

$$r(x) \equiv a(x) \mod b(x),$$

where $\deg[r(x)] < \deg[b(x)]$.

Theorem 7 Let $d(x) = g(x) \cdot h(x)$. Then, for any polynomial a(x),

$$R_{g(x)}[a(x)] = R_{g(x)}\{R_{d(x)}[a(x)]\}$$

Proof: Divide a(x) by d(x):

$$a(x) = Q_1(x)d(x) + R_{d(x)}[a(x)]$$

= $Q_1(x)g(x)h(x) + R_{d(x)}[a(x)]$

 and

$$R_{g(x)}[a(x)] = R_{g(x)}\{R_{d(x)}[a(x)]\}$$

Theorem 8

$$R_{d(x)}[a(x) + b(x)] = R_{d(x)}[a(x)] + R_{d(x)}[b(x)]$$

$$R_{d(x)}[a(x) \cdot b(x)] = R_{d(x)} \{R_{d(x)}[a(x)] \cdot R_{d(x)}[b(x)]\}$$

Proof: As with the residues, use the division algorithm and equate the remainders. (Blahut, p. 74) \Box

The Unique Factorization Theorem for Polynomials

Theorem 9 Any monic polynomial over a field can be uniquely factored into monic irreducible polynomials over that field.

Proof: Blahut, p.75. This generalizes the well-known UFT for integers:

$$a \in \mathbb{Z} \Rightarrow a = p_1^{m_1} \cdot p_2^{m_2} \cdots p_n^{m_n}$$

for some finite n.

Theorem 10 (The Euclidean Algorithm for Polynomials.) Let $a(x), b(x) \subset GF(q)[x]$ and deg[a(x)] < deg[b(x)]. Then GCD[a(x), b(x)] can be found by the iterative algorithm:

$$b(x) = Q_1(x)a(x) + r_1(x)$$

$$a(x) = Q_2(x)r_1(x) + r_2(x)$$

$$r_1(x) = Q_3(x)r_2(x) + r_3(x)$$

$$r_{n-2}(x) = Q_n(x)r_{n-1}(x) + r_n(x)$$

 $r_n(x) = Q_{n+1}(x)r_n(x)$

and $\alpha \cdot GCD[a(x), b(x)] = r_n(x)$, where $\alpha \in GF(q)$.

Proof: of Euclidean Theorem for Polynomials parallels that for the integers (Blahut, p.76).

Theorem 11 (The Fundamental Theorem of Algebra) Let deg[f(x)] = n. Then, f(x) has at most n zeros and $f(\alpha) = 0$ if and only if $(x - \alpha)|f(x)$.

Proof: See text.

4.2.3.4 Finite Fields from Polynomial Rings

- By analogy with $\mathbb{Z}/(q)$, we use quotients in GF(q)[x] to construct finite fields.
- This permits construction of fields not possible using integer residues.
- For notational simplicity, let $\mathbb{F}_q \stackrel{\scriptscriptstyle riangle}{=} GF(q)$. be any finite field having q elements.

Now, consider $p(x) \in \mathbb{F}_q[x]$ with deg[p(x)] > 0.

Definition 20 The polynomials modulo p(x) over \mathbb{F}_q :

$$\mathbb{F}_q[x]/(p(x)) \stackrel{\scriptscriptstyle \triangle}{=} \{f(x): s.t. \ deg[f(x)] < deg[p(x)]\}$$

Now divide:

$$g(x) = Q_g(x) \cdot p(x) + r_g(x)$$

$$h(x) = Q_h(x) \cdot p(x) + r_h(x)$$

Then

•
$$r_g(x), r_h(x) \in \mathbb{F}_q[x]/(p(x)).$$

• If
$$r_g(x) = r_h(x)$$
, then we write

$$g(x) \equiv h(x) \pmod{p(x)}$$

even if $g(x) \neq h(x)$.

Theorem 12 $\mathbb{F}_q[x]/(p(x))$ is a ring.

Proof: Test the addition and multiplication axioms mod p(x).

Theorem 13 $\mathbb{F}_q[x]/(p(x))$ is a field if and only if p(x) is irreducible.

Proof: Many texts.

- Clearly $\mathbb{F}_q[x]$ contains q^m elements where m = deg[p(x)].
- We call this field, $GF(q^m)$ or F_{q^m} .
- So any prime polynomial p(x) can generate a field.

Compare:

- $p(x) \in \mathbb{F}_q[x].$
- $\mathbb{F}_q[x]/(p(x))$ is $\mathbb{F}_{q^m} \equiv GF(q^m)$ for prime p(x).
- \mathbb{F}_{q^m} is an **extension field** of \mathbb{F}_q .
- $\mathbb{F}_q \equiv GF(q)$ is a subfield of $\mathbb{F}_{q^m} \equiv GF(q^m)$.

Example: Let $p(x) = x^2 + x + 1$

- p(x) is prime over \mathbb{F}_2 (verify). So,
- $\mathbb{F}_2(x)/(p(x))$ is a field with $2^2 = 4$ elements and

- "+" and " \times " mod p(x)

- Members (polynomials of degree < 2):

Important note: Although elements of nonprime fields are *polynomials*, now that we can write down the + and \times tables, we can use any convenient notation. For example, in GF(8) we can use the symbols 0,1,...,7 *so long as we don't confuse the field with* \mathbb{Z}_8 .
Lemma: The nonzero elements of GF(q) form a *multiplicative group*. **Proof:** Obvious

- Suppose $1, \beta, \beta^2, \dots \in GF(q)$ where order of $\beta = m$.
- Then, $m \mid q-1$ (from coset decomposition).

Definition 21 An element of GF(q) of order q - 1 is a primitive element of GF(q)

Lemma: If α is primitive in GF(q), then $\{1, \alpha, \alpha^2, \dots, \alpha^{q-2}\}$ are all the nonzero elements of GF(q).

Proof: From definition of primitive.

Theorem 14 Let $\{\beta_1, \beta_2, \dots, \beta_{q-1}\}$ be the non-zero elements of GF(q). Then

$$x^{q-1} - 1 = (x - \beta_1)(x - \beta_2) \cdots (x - \beta_{q-1})$$

Proof:

• For $1 \le j \le (q-1)$ and $\beta_j \in GF(q)$ $m_j \mid q-1.$

Therefore

$$\beta_j^{q-1} = (\beta_j^{m_j})^{\frac{q-1}{m_j}} = (1)^{\frac{q-1}{m_j}} = 1$$

so that β_j is a zero of $x^{q-1} - 1$.

Theorem 15 GF(q) always contains a primitive element.

Proof:

- The non-zero elements form a cyclic group.
- Therefore, there is an element of order q-1.

Definition 22 A primitive polynomial is an irreducible polynomial p(x) of degree m over GF(q) having a primitive element of $GF(q^m)$ as a root.

This definition means that, if:

- 1. p(x) is irreducible over GF(q),
- 2. α is primitive in $GF(q^m)\text{, and}$
- 3. $p(\alpha) = 0$,

then,

• p(x) is a primitive polynomial and

$$\alpha^{q^m-1} = 1.$$

Example of generating a nonprime field

Let

- $p(x) = x^4 + x + 1 \in GF(2)$ be primitive (can verify How?).
- α be primitive in $GF(2^4)$ and $p(\alpha) = 0$. Then,

$$\alpha^4 + \alpha + 1 = 0 \tag{5}$$

From (5) we can write:

$$\begin{array}{rcl} \alpha^4 & = & 1 + \alpha \\ \alpha^5 & = & \alpha + \alpha^2 \end{array}$$

etc. The complete set of powers of α follows.

$\alpha^0 =$	1						
$\alpha^1 =$			lpha				
$\alpha^2 =$					$lpha^2$		
$\alpha^3 =$							$lpha^3$
$\alpha^4 =$	1	+	lpha				
$\alpha^5 =$			lpha	+	α^2		
$\alpha^6 =$					$lpha^2$	+	$lpha^3$
$\alpha^7 =$	1	+	lpha			+	$lpha^3$
$\alpha^8 =$	1			+	$lpha^2$		
$\alpha^9 =$			lpha			+	$lpha^3$
$\alpha^{10} =$	1	+	lpha	+	α^2		
$\alpha^{11} =$			lpha	+	$lpha^2$	+	$lpha^3$
$\alpha^{12} =$	1	+	lpha	+	$lpha^2$	+	$lpha^3$

Exercise: Generate $GF(2^4)$ using a different primitive polynomial. Do you get the same field?

4.2.3.5 The Structure of GF(q)

• We seek to do "arithmetic" in GF(q).

Definition 23 The characteristic of GF(q) is the number of elements in its smallest subfield.

Example: The characteristic of GF(16) is 2.

Theorem 16 Every finite field GF(q) contains a unique, smallest subfield that contains a prime number of elements.

Proof:

- Every GF(q) contains 0 and 1.
- Let $G \triangleq \{0, 1, 2, \dots, r-1\}$, where $i = \underbrace{1+1+\dots+1}_{i \ times}$,
 - So G is a cyclic additive, finite subgroup of GF(q) of order r.
 - Hence, addition in G is modulo r.
 - For $i,j\in G$,

$$i \cdot j = (1 + 1 + \dots + 1) \cdot j$$
$$= (j + j + \dots + j).$$

- Therefore " \times " is modulo r as well.

- Since G is
 - cyclic,
 - of order r
 - having modulo r operations "+" and " \times ",
- then it is by an earlier proof, a prime field of size r.
- Since it is prime, it has no subfield, and the theorem is proved.

Corollary: The characteristic of any Galois field is prime. *Proof:* Follows immediately from the previous construction

Corollary: In a field of characteristic p, $(a + b)^p = a^p + b^p$. Proof:

$$(a+b)^{p} = a^{p} + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^{2} + \dots + \binom{p}{p-1}ab^{p-1} + b^{p}$$

But

$$\binom{p}{j} = 0 \mod p \ \forall j,$$

and the lemma is proved.

Example (continued)

Arithmetic in $GF(2^4)$ is performed in this manner:

• (×):
$$\alpha^j \times \alpha^k = \alpha^{j+k} \pmod{2^4-1}$$

• (+): From the table,

$$\alpha^{5} + \alpha^{9} = \alpha + \alpha^{2} + \alpha + \alpha^{3}$$
$$= \alpha^{2} + \alpha^{3}$$
$$= \alpha^{6}.$$

More on Extension Fields

• Let GF(q) be a subfield of GF(Q) and $\beta \in GF(Q)$. Then,

Definition 24 The minimal polynomial $m_{\beta}(x)$ of β over GF(q) is the prime polynomial of smallest degree over GF(q) for which $m_{\beta}(\beta) = 0.$

Theorem 17 Two-part theorem:

- I: Every $\beta \in GF(Q)$ has a unique minimal polynomial over GF(q).
- II: If m(x) is the minimal polynomial of β and if $g(\beta) = 0$, then m(x)|g(x).

Proof: See text.

Corollary: If $m_1(x), \dots, m_k(x)$ are the minimal polynomials over GF(q) for all the elements of GF(Q), then

$$x^Q - x = \prod_{i=1}^k m_i(x).$$

Proof: β is always a zero of $x^Q - x$, so this is true by UFT.

Theorem 18 For any g(x) over GF(q), there exists an extension field GF(Q) in which $g(x) = \prod (x - \beta_i)$.

Proof: See text.

Definition 25 A splitting field of $g(x) \in \mathbb{F}_q[x]$ is any extension GF(Q) of GF(q) in which g(x) factors into linear and constant terms only.

Theorem 19 Let α be primitive in GF(Q), an extension of GF(q)and let $deg[m_{\alpha}(x)] = m$. Then

- $Q = q^m$, and
- Any $\beta \in GF(Q)$ can be written as

$$\beta = b_{m-1}\alpha^{m-1} + \dots + b_1\alpha + b_0, \ b_i \in GF(q).$$

Note: Therefore, GF(Q) is a vector space over GF(q).

Proof: See text.

The following follow directly from the theorem and are computationally useful.

- For every prime number p and positive integer m, there exists a finite field of size p^m .
- In $GF(q), \ q = p^m$, $(a+b)^q = a^q + b^q$.
- The smallest splitting field of the polynomial $x^{p^m} x$ has exactly p^m elements.

4.3 Viewing Cyclic codes from Extension Fields -An Example

• For α primitive in $GF(2^3),$ let

$$p(x) = x^{3} + x + 1$$

$$p(\alpha) = 0$$

$$H = \left[\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right].$$

• Expanding powers of α , write H in binary form:

i.e., $\alpha^3 = 1 + \alpha$, etc.

- Let \mathbf{H} be check matrix of some binary code \mathcal{C} .
- For $\mathbf{c} \in \mathcal{C}$,

$$\mathbf{c} \cdot \mathbf{H}^T = 0.$$

$$\sum_{i=0}^{n-1} c_i \alpha^i = 0$$
$$c(\alpha) = 0$$

which defines a polynomial c(x) having α as a root.

- Thus we establish the correspondence between *codewords* and *polynomials*
- Note: H is the check matrix of the binary, Hamming (7,4) code.

In general,

- Let **H** be $(n-k) \times n$ q-ary matrix s.t. m|(n-k).
- Represent the first m rows of **H** as a single row of symbols from $GF(q^m)$, $(\beta_{11}, \ldots, \beta_{1n})$. Repeat for every set of m rows.

$$\mathbf{H} = \begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\ \beta_{11} & \beta_{12} & \cdots & \beta_{2n} \\ \vdots & & & \\ \beta_{\rho 1} & \beta_{\rho 2} & \cdots & \beta_{\rho n} \end{bmatrix}$$

where

$$o = \frac{n-k}{m}$$

This is not new, merely more *compact*. However,...

- Consider the special case where $B_{ij} = \gamma_i^{j-1}$.
- Then the i^{th} row of ${f H}$ can be written: $\gamma_i^0, \gamma_i^1, \ldots, \gamma_i^{n-1}$, for

$$i=1,\ldots,
ho$$
 and

$$-n = q^m - 1.$$

$$\mathbf{H} = \begin{bmatrix} \gamma_1^0 & \gamma_1^1 & \cdots & \gamma_1^{n-1} \\ \gamma_2^0 & & & \\ \vdots & & & \\ \gamma_\rho^0 & & & \gamma_\rho^{n-1} \end{bmatrix}$$

 $\bullet \ \ \text{For some} \ \mathbf{c} \in \mathcal{C}$

$$\mathbf{c}H^T = 0$$

$$\sum_{i=1}^{n-1} c_i \gamma_j^i = 0, \ j = 1, \cdots, \rho$$

- So C is all c(x) of degree $\leq n-1$ s.t. $c(\gamma_i) = 0, i = 1, \dots, \rho$
- $\bullet\,$ and ${\bf H}$ is the check matrix of the code ${\cal C},$ where

$$C = \{c(x) \ s.t., \ \deg[c(x)] \le n, \ c(\gamma_j) = 0, \ j = 1, \dots, \rho.$$

 $\bullet \ \Rightarrow$ But we have not shown that ${\mathcal C}$ is cyclic. \Leftarrow

4.4 Cyclic Codes, Formally 4.4.1 Algebraic Description of Cyclic Codes

Definition 26 $\mathbb{F}_q[x] \stackrel{\scriptscriptstyle riangle}{=}$ the ring of polynomials over GF(q).

Definition 27 $\mathbb{F}_q[x]/(x^n-1) \stackrel{\triangle}{=} the ring of polynomials over <math>GF(q)$ mod (x^n-1) .

Definition 28 A subset I of any ring \mathbf{R} is an ideal if

 $\bullet\,$ it is a subgroup of the additive group of ${\bf R},$ and

•
$$r \in \mathbf{R}$$
 and $a \in I \Rightarrow ar \in I$.

Clearly
$$c(x) \in \mathbb{F}_q[x]/(x^n - 1) \Rightarrow \deg[c(x)] \le n - 1$$

and,

```
Lemma: xc(x) \in \mathbb{F}_q[x]/(x^n - 1).
```

```
Proof: See text.
```

So,

- Associate *n*-tuple $\mathbf{c} \in sC$ with $c(x) \in \mathbb{F}_q[x]/(x^n-1)$.
- \bullet All such codewords $\mathbf{c},$ then, are cyclic.
- xc(x) is the cyclic shift of c(x).

Notation: C represents both the codewords $\{c\}$ and the polynomials $\{c(x)\}$.

Theorem 20 C is a q-ary linear cyclic code of length n if and only if the $\{c(x)\} \in C$ form an ideal in $\mathbb{F}_q[x]/(x^n - 1)$.

Simply put, a cyclic code of block length n is an ideal in the ring of polynomials modulo $x^n - 1$.

Proof:

Case i (if): Assume 1 and 2 are true. Then C is:

- closed under +.
- closed under mult by any scalar (where a(x) is a "scalar.")
- therefore, is a subspace, therefore a code.
- If a(x) = x, C is cyclic.

Case ii (only if): Assume C is a cyclic code. Then it is

- a subspace;
- closed under
 - +
 - multiplication by a scalar, specifically -
 - multiplication by x.
- and, therefore, under multiplication by arbitrary polynomial a(x).

4.4.2 Generating Cyclic Codes

Lemma: Given an ideal \mathcal{I} of $\mathbb{F}_q[x]/(x^n - 1)$. The non-zero monic polynomial g(x) of smallest degree in \mathcal{I} is unique. *Proof:*

- Let $\deg[g(x)] = r$.
- Select $\alpha \in \mathbb{F}_q$ so that $\alpha g(x)$ is monic. Note that $\alpha g(x) \in \mathcal{I}$.
- Suppose another monic $f(x) \in \mathcal{I}$ with deg[f(x)] = r.
- Then $f(x) g(x) \in \mathcal{I}$.
- But $\deg[f(x) g(x)] \le \deg[g(x)]$.
 - This contradicts our choice of g(x).
- Therefore g(x) is as claimed.

Definition 29 : The non-zero polynomial g(x) of smallest degree in ideal \mathcal{I} is called the **generator polynomial** of the ideal.

Theorem 21 A cyclic code consists of all multiples of its generator polynomial g(x) by polynomials a(x) of degree $\leq k - 1$.

Proof:

- If $g(x) \in \mathcal{C}$, then $a(x)g(x) \in \mathcal{C} \ \forall a(x)$.
- Suppose $c(x) \in \mathcal{C}$, and suppose:

$$c(x) = Q(x)g(x) + s(x).$$

• But $c(x) \in \mathcal{C}$, and $Q(x)g(x) \in \mathcal{C} \Rightarrow s(x) \in \mathcal{C}$. But

 $\deg[s(x)] < \deg[q(x)]$

Yet g(x) is the polynomial of smallest degree in \mathcal{C} . Hence, $s(x) \equiv 0$

Theorem 22 : A cyclic code C of length n and generator polynomial g(x) exists if and only if $g(x)|(x^n - 1)$.

Proof:

• Suppose $\mathcal{C} = < g(x) > \mathsf{but}$

$$x^{n} - 1 = Q(x)g(x) + s(x), \ \deg[s(x) < \deg[g(x)]]$$
$$R_{x^{n}-1}(x^{n}-1) = 0 = R_{x^{n}-1}[Q(x)g(x)] + R_{x^{n}-1}[s(x)]$$
$$= R_{x^{n}-1}[Q(x)g(x)] + s(x)$$

- Since $R_{x^n-1}[Q(x)g(x)] \in \mathcal{C}$, then $s(x) \in \mathcal{C}$.
- But: deg[s(x)] < deg[g(x)], so $s(x) \equiv 0$ and $g(x)|(x^n 1)$.
- Conversely, every $g(x)|(x^n-1)$ can generate a code.

4.4.3 Parity Check Polynomial

Definition 30 : Let $x^n - 1 = g(x)h(x)$. If g(x) generates a code, then we call h(x) the parity check polynomial of the code.

Lemma: For every $c(x) \in C$

$$R_{x^n-1}[h(x)c(x)] = 0$$

Proof:

• For some a(x)

$$h(x)c(x) = h(x)g(x)a(x) = (x^{n} - 1)a(x)$$

4.4.4 Error Polynomial

- Transmit q-ary codeword $c(x) \in C$ over noisy channel.
- Receive vector v(x)
- Both are in $\mathbb{F}_q[x]/(x^n-1)$.

Definition 31 : The error polynomial is the difference v(x) - c(x) between received and transmitted polynomials.

i.e.,

$$v(x) = c(x) + e(x)$$

This is a model for the class of additive noise channels.

Definition 32 : The information encoded by C is represented by a polynomial a(x), $deg[a(x)] \le k - 1$.

•
$$c(x) = a(x)g(x) \mod x^n - 1$$

• $C = \{c(x) = a(x)g(x)\}$ is **not** systematic in (try it!).

Lemma: c(x) belongs to a systematic, cyclic code if

$$c(x) = x^{n-k}a(x) + t(x)$$

where t(x) is chosen so that $c(x) \equiv 0 \mod x^n - 1$.

Proof: Exercise

4.5 Explicit Constructions of Cyclic Codes

• **Objective:** To find an explicit construction of g(x) for cyclic code of length n.

Consider the *prime factorization*:

$$x^{n} - 1 = f_{1}(x)f_{2}(x)\cdots f_{s}(x)$$
$$= \prod_{i=1}^{s} f_{i}(x).$$

• Select some factors of $x^n - 1$:

$$g(x) = f_{i_1}(x) \cdot f_{i_2}(x) \cdots f_{i_j}(x), \ j = 1, 2, \cdots, s.$$

- How many such g(x) can we form?
 - 2^s possibilities;
 - Eliminate choosing no factors.
 - Eliminate choosing all factors.
 - $\Rightarrow 2^s 2$ possiblities.

4.5.1 Finding a Generator Polynomial g(x)

We consider two ways to specify g(x), by its *factors* and by its roots.

$$x^{q^m - 1} - 1 = \prod f_i(x) \tag{6}$$

- This prime factorization is unique.
- $\beta_j \neq 0 \in GF(q^m)$ is a root of (6).
- And we can *factor* each $f_i(x)$ in $GF(q^m)$:

$$x^{q^m - 1} - 1 = \prod_{i=1}^{s} f_i(x) = \prod_{j=1}^{q^m - 1} (x - \beta_j)$$

- Each β_{ρ} will be a zero of exactly one such polynomial.
- Each $f_i(x)$ is the polynomial of *smallest degree* such that $f_i(\beta_j) = 0$.
Theorem 23 : A polynomial c(x) is a codeword in a primitive code if and only if all the roots of g(x) are also roots of c(x). Proof:

Let $\{\beta_j\}$ be the set of roots of g(x).

• Every codeword c(x) = a(x)g(x). Therefore

$$c(\beta_j) = a(\beta_j)g(\beta_j) = 0.$$

• Conversely let $c(\beta_j) = 0$. Divide by $m_{\beta_j}(x)$:

$$c(x) = Q(x)m_{\beta_j}(x) + r(x)$$

$$c(\beta_j) = 0 = Q(\beta_j)m_{\beta_j}(\beta_j) + s(\beta_j)$$

$$s(x) = 0$$

because $deg[s(x)] < deg[m_{\beta_j}(x)].$

Example: Find all binary cyclic codes of length n = 15.

$$x^{15} - 1 = (x+1)(x^2 + x + 1)(x^4 + x + 1)$$

$$\cdot (x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

$$= f_1(x)f_2(x)f_3(x)f_4(x)f_5(x)$$

• There are 5 factors, so $2^5 - 2$ nontrivial binary cyclic codes.

• **Example:**(continued) Let $g(x) = f_4(x)f_5(x)$:

$$g(x) = x^8 + x^4 + x^2 + x + 1$$

- $-f_4(x)$ is primitive (verify), so one of its roots α is primitive in $GF(2^4)$.
- Also α^3 is a root of $f_5(x)$ (verify).
- Therefore the roots of g(x) include α, α^3 .
- $\deg[g(x)] = 8 = n k$, so k = 7.
- $w_H[g(x)] = 5$ (see above) so $d_{min} \leq 5$.

• Generally, if we want
$$g(eta_i)=0, \ i=1,\cdots,r$$
:

- we must find $m_{\beta_1}(x), \cdots, m_{\beta_r}(x)$.

- Set

$$g(x) = LCM[m_{\beta_1}(x), \cdots, m_{\beta_r}(x)]$$

and g(x) is as desired.

• How do we find m_{β_j} ? (See next Theorem.)

Exercise: If deg $[m_{\beta}(x)] = h$ and $m_{\beta}(\beta) = 0$ what are the other h - 1 other zeros of $m_{\beta}(x)$?

Theorem 24 : If β is an element of $GF(q^m)$ with minimal polynomial $m_{\beta}(x)$ over GF(q), then $m_{\beta}(x)$ is also the minimal polynomial of β^q . *Proof:* Text.

Definition 33 : Two elements of $GF(q^m)$ having the same minimal polynomial over GF(q) are said to be **conjugates** with respect to GF(q).

- So β and β^q are conjugates by the theorem.
- So are $\beta^{q^2}, \cdots, \beta^{q^{r-1}}$ where r is the smallest integer such that $\beta^{q^r} = \beta$.
- This leads directly to ...

Theorem 25 $m_{\beta}(x) = (x - \beta)(x - \beta^2) \cdots (x - \beta^{q^{r-1}}).$ *Proof:*

- All the conjugates of β are roots.
- Must show that the coefficients of $m_{\beta}(x)$ lie in GF(q).

$$[m_{\beta}(x)]^{q} = (x - \beta)^{q} \cdots (x - \beta^{q^{r-1}})^{q}$$
$$= (x^{q} - \beta^{q}) \cdots (x^{q} - \beta^{q^{r}})$$
$$= (x^{q} - \beta^{q}) \cdots (x^{q} - \beta)$$
$$= m_{\beta}(x^{q})$$
$$= \sum m_{i\beta} x^{iq}$$

But also, by the theorem:

$$[m_{\beta}(x)]^q = \sum m_{i\beta}^q x^{iq}$$

Therefore $m_{i\beta}^q = m_{i\beta}$.

Summary of foregoing:

- Given a field GF(q), select blocklength n.
- Using primitive element, find minimal polynomial and conjugate roots.
- Add additional roots if needed to obtain desired k.
- Write down g(x).

4.5.2 Non-primitive Cyclic Codes.

Definition 34 For a code over GF(q), a blocklength of the form $n = q^m - 1$ is called a primitive blocklength.

A cyclic code of such length is called a primitive cyclic code.

Lemma: n divides $q^m - 1$ for some m.

Theorem 26 : Given GF(q) and integer n relatively prime to q. Then there exists an integer m for which

$$(x^n - 1)|(x^{q^m - 1} - 1)|$$

Then $x^n - 1$ has m distinct roots in $GF(q^m)$.

4.5.3 Summary: How to Describe any Cyclic Code

• A cyclic code of (given) length n over GF(q) is generated by $g(\boldsymbol{x})$ where

$$g(x)|(x^n-1)$$

• To get g(x), select primitive element $\alpha \in GF(q^m)$, where

$$q^m - 1 = nb$$
$$\alpha^{nb} = 1$$

- Determine the minimal polynomial $m_{\alpha}(x)$ over GF(q).
- Then $m_{\alpha}(x) \mid g(x)$.
- For lower rate code, find another root, $\hat{\alpha}$ and write

$$g(x) = LCM(m_{\alpha}(x), m_{\hat{\alpha}}(x)).$$

Note: We can (and will) say more about how to design C to have given rate or minimum distance.

4.6 Matrix Description of Cyclic Codes 4.6.1 Formal Method

- Let $g(x) \in \mathbb{F}_q[x]$ have zeros $\gamma_i, i = 1, \ldots, r$ in $GF(q^m)$.
- If c(x) is a codeword, $c(\gamma_i) = 0, \ i = 1, \dots, r$, or

$$\sum_{j=0}^{n-1} c_j \gamma_i^j = 0, \ i = 1, \dots, r.$$

• Since there is **H** for which $\mathbf{c}H^T = 0$, this suggests:

$$\mathbf{H}^{T} = \begin{bmatrix} \gamma_{1}^{0} & \gamma_{2}^{0} & \cdots & \gamma_{r}^{0} \\ \gamma_{1}^{1} & \gamma_{2}^{1} & \cdots & \gamma_{r}^{1} \\ \gamma_{1}^{2} & \gamma_{2}^{2} & \cdots & \gamma_{r}^{2} \\ \cdots & & & \\ \gamma_{1}^{n-1} & \gamma_{2}^{n-1} & \cdots & \gamma_{r}^{n-1} \end{bmatrix}$$

over
$$GF(q^m)$$

- Can write $\gamma_i^j = (\gamma_{i0}, \gamma_{i1}, \dots, \gamma_{i(n-1)}), \ \gamma_{i\sigma} \in GF(q).$
- Then replace each element in H by a column m-tuple over GF(q).
- This gives a matrix having dimensions $rm \times n$ over GF(q).
- Note: Remove linearly dependent rows.
- This gives \mathbf{H} matrix over GF(q).

This is a cumbersome algorithm.

4.6.2 A Direct Method

• Use the generator g(x):

$$c(x) = a(x)g(x)$$

where,

$$g(x) = \sum_{j=0}^{n-k} g_j x^j$$
$$a(x) = \sum_{i=0}^{k-1} a_i x^i$$

• Consider coefficients of $\mathbf{c} = \mathbf{a}G$:

$$c(x) = a(x)g(x) = \sum_{i=0}^{k-1} \sum_{j=0}^{n-k} a_i g_j x^{i+j}$$

$$= a_0 g_0 + (a_1 g_0 + a_0 g_1) x + \cdots$$

$$+ (a_{k-2} g_{n-k} + a_{k-1} g_{n-k-1}) x^{n-2} + a_{k-1} g_{n-k} x^{n-1}$$

$$\mathbf{c} = (a_{k-1} g_{n-k}, (a_{k-2} g_{n-k} + a_{k-1} g_{n-k-1}), \cdots (a_1 g_0 + a_0 g_1), a_0 g_0),$$

$$(a_0, a_1, \cdots, a_{k-1}) \begin{bmatrix} 0 & 0 & \cdots & g_1 & g_0 \\ 0 & 0 & \cdots & g_0 & 0 \\ \vdots & & & \\ 0 & g_{n-k} & \cdots & 0 & 0 \\ g_{n-k} & g_{n-k-1} & \cdots & 0 & 0 \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 0 & 0 & \cdots & g_1 & g_0 \\ 0 & 0 & \cdots & g_0 & 0 \\ \vdots & & & & \\ 0 & g_{n-k} & \cdots & 0 & 0 \\ g_{n-k} & g_{n-k-1} & \cdots & 0 & 0 \end{bmatrix}$$

• Recall
$$x^n - 1 = g(x)h(x)$$

• For any codeword c(x)

$$R_{x^n-1}[c(x)h(x)] = 0$$

• As above, we can use h(x) to write:

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & \cdots & h_0 & h_1 & \cdots & h_{k-1} & h_k \\ \cdots & & & & & \ddots \\ 0 & h_0 & h_1 & \cdots & h_{k-1} & h_k & 0 & \cdots & 0 \\ h_0 & h_1 & h_2 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$

• To show that $\mathbf{G}H^T = \mathbf{0}$:

– The product of s^{th} row of ${f G}$ and t^{th} column of ${f H}^T$ has the form

$$u_r = \sum_{i=0}^r g_{r-i}h_i = 0, \ 1 \le r \le n-1,$$

- and u_r is the coefficient of x^r in $g(x) \cdot h(x) = x^n - 1$.

• Hence, $u_r = 0$ unless r = 0 or n.

Hence, $\mathbf{G}H = 0$ and \mathbf{H} is the parity check matrix.

4.6.3 The Dual Code

- The check matrix **H** of the code generated by **G** has the form of a generator matrix for a cyclic code.
- Therefore, the dual of a cyclic code is a cyclic code.
- Examining the order of coefficients in **H** shows that the dual code is generated by

$$\tilde{h}(x) = x^k h(x^{-1})$$
STOP