4.0 Cyclic Codes

4.1 Informal Definition

Definition $1 A$ code C is a cyclic code if every cyclic shift of \mathbf{c} also belongs to \mathcal{C}.

That is, if \mathcal{C} is cyclic,

- $(a, b, c) \in \mathcal{C} \Rightarrow(b, c, a) \in \mathcal{C}$;
- recursively so.

We will study linear cyclic codes. Why?

- Cyclic code words are easily generated?
- They are, but that's not the reason.
- Cyclic codes have a rich, complex structure which permits the coding theorist and the engineer to:

1. understand precisely the performance and limitations of the code, and
2. study classes and families of cyclic codes that have properties specific to an application.

Definition 2 For a cyclic code \mathcal{C},

$$
\left(c_{0}, c_{1}, \ldots c_{n-1}\right) \in \mathcal{C} \Rightarrow\left(c_{n-1}, c_{0}, \ldots c_{n-2}\right) \in \mathcal{C}
$$

- Let us represent a cyclic code word of length n by a polynomial of degree $n-1$:

$$
\begin{aligned}
\mathbf{c} & =\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \mathcal{C} \\
c(x) & =c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in \mathcal{C}
\end{aligned}
$$

- or 2 equivalent notations for the same concept.
- So, in addition to $c(x)$,

$$
\begin{aligned}
& c_{n-1}+c_{0} x+c_{1} x^{2} \cdots+c_{n-2} x^{n-1} \in \mathcal{C} \\
& c_{n-2}+c_{n-1} x+c_{0} x^{2} \cdots+c_{n-3} x^{n-1} \in \mathcal{C} \\
& c_{1}+c_{2} x+\cdots+c_{n-1} x^{n-2}+c_{0} x^{n-1} \in \mathcal{C}
\end{aligned}
$$

Write

$$
\begin{aligned}
c(x) & =c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \\
x c(x) & =c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1}+c_{n-1} x^{n}
\end{aligned}
$$

But, the cyclic shift of $c(x)$ is

$$
c_{n-1}+c_{0} x+c_{1} x^{2} \cdots+c_{n-2} x^{n-1} .
$$

Is there a way to derive the cyclic shift of $c(x)$ from the polynomial $x c(x)$?

Yes!

- Divide $x c(x)$ by $x^{n}-1$.
- The remainder is the cyclic shift of codeword $c(x)$.

Proof: Straightforward algebra (Exercise).

Temporarily, we write this remainder as $<x c(x)>$. Then,

$$
\begin{aligned}
c(x) & =c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in \mathcal{C} \\
<x c(x)> & =c_{n-1}+c_{0} x+c_{1} x^{2} \cdots+c_{n-2} x^{n-1} \\
<x^{2} c(x)> & =c_{n-2}+c_{n-1} x+c_{0} x^{2} \cdots+c_{n-3} x^{n-1}
\end{aligned}
$$

Theorem 1 The set of polynomials of degree $n-1$ is closed under addition, subtraction, and multiplication modulo $x^{n}-1$. Proof: By construction. Work it out.

- Such an algebraic structure is called a ring.
- To study the rich algebraic structures of cyclic codes, we need some modern or abstract algebra.

4.2 The Algebra of Cyclic Codes
 4.2.1 Rings

Definition 3 A commutative ring is a set \mathbf{R} with two operations \oplus and \star such that:

- \mathbf{R} is a commutative group under \oplus;
- \mathbf{R} is closed under \star;
- \star is commutative and associative: For $a, b \in \mathbf{R}$, $(a \star b) \star c=a \star(b \star c) ;$
- \star distributes over \oplus :

$$
\begin{aligned}
a \star(b \oplus c) & =a \star b \oplus a \star c \\
(d \oplus e) \star f & =d \star f \oplus e \star f
\end{aligned}
$$

- If there is an identity e under \star, it is unique.

Ring Properties:

- Let $\mathcal{O}=$ the identity under \oplus and $\mathcal{E}=$ the identity under \star (e.g., like 0 and 1.)

$$
\begin{aligned}
\mathcal{O} \star a & =a \star \mathcal{O}=0 . \\
a \star(-b) & =(-a) \star b=-(a \star b) .
\end{aligned}
$$

- The (multiplicitive) identity \mathcal{E} in \mathbf{R} is unique.
- The (multiplicitive) inverse $\left(a^{-1}\right)^{-1}$ of a^{-1} is a.

Exercise: Prove these.

Important Example:

The set $\mathbb{R}[x]$ of univariate polynomials with real coefficients is a commutative ring with identity 1.

Definition $4 A n$ integral domain is a ring with a cancellation property.
e.g., \mathbb{Z} is an integral domain, and:

$$
a c=a d \Rightarrow c=d, \quad \forall a \neq 0, \quad c, d \in \mathbb{Z}
$$

However, a^{-1} does not exist in \mathbb{Z}.

4.2.2 Fields

Definition 5 A field is a commutative ring in which every element also has an inverse under the second operation \star.

Note: In most cases, you can think of \oplus and \star as "addition" and "multiplication."

Examples:

- \mathbb{Q}, \mathbb{R}, and \mathbb{C} are examples of infinite fields. (Exercise: find the multiplicative inverse of $a+j b$ in \mathcal{C}.
- $G F(q)$ is the finite field of $q \in \mathbb{Z}$ elements. (There are restrictions on q as we shall see later.)
- $G F(2)$ (Exercise: construct the tables.)
- $G F(3)=\{0,1,2\}$. (Exercise: construct the tables.)

GF(4)

+	0	1	2	3
0				
1	0	1	2	3
2	0	3	2	
3	3	3	0	1
	2	1	0	

$*$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	1
3	0	3	1	2

Exercise: Is this modulo 4 arithmetic?

Later: How to construct $G F(q)$ for any allowed $q=p^{m}$.

4.2.1 Subfields

Definition 6 A subfield is a subset of a field which itself is a field under the "inherited" operations.

The original field is said to be an extension of the subfield.

Examples:

- \mathbb{Q} (rationals) is a subfield of \mathbb{R} (reals)
- \mathbb{R} is a extension of \mathbb{Q}.
- \mathbb{R} is a subfield of \mathbb{C} (complex).
- \mathbb{C} is a extension of \mathbb{R}.

4.2.3 Polynomial Algebra and Galois Fields

4.2.3.1 The Integer Ring, \mathbb{Z}

Since cyclic codewords are polynomials, an algebra of polynomials will be helpful.

Definition 7 Let $a, b \in \mathbb{Z}$.

- $(a, b) \triangleq \operatorname{GCD}(a, b) \triangleq$ largest $d \in \mathbb{Z}$ s.t.: $d \mid a$ and $d \mid b$.
- $\operatorname{LCM}(a, b) \triangleq$ smallest $m \in \mathbb{Z}$ s.t.: $a \mid m$ and $b \mid m$.
- a, b are said to be relatively prime if $\operatorname{GCD}(a, b)=1$
- a is said to be prime if divisible by 1 and a only.

The Division Algorithm of Algebra: For any $a, b \neq 0, \in \mathbb{Z}$, there exist a quotient q and a remainder r, both in \mathbb{Z} such that:

$$
a=b q+r .
$$

Lemma q and r are unique.
Proof:

- Suppose not. Then there are two quotients and remainders:

$$
\begin{array}{r}
a=b q_{1}+r_{1} \\
a=b q_{2}+r_{2} \\
0=b\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)
\end{array}
$$

- Therefore, $\left(r_{1}-r_{2}\right)$ is an integer multiple of b.
- But $r_{1}<b$ and $r_{2}<b \Rightarrow$ contradiction.

Definition 8 When $a=b q+r$, we write:

$$
R_{b}[a] \triangleq r
$$

Definition 9 We say that

$$
\begin{aligned}
a & \equiv r(b) \\
a & =r \bmod b
\end{aligned}
$$

Theorem 2 For $a, b, t \in \mathbb{Z}$,

$$
\begin{aligned}
R_{t}[a+b] & =R_{t}\left[R_{t}[a]+R_{t}[b]\right] \\
R_{t}[a b] & =R_{t}\left\{R_{t}[a] \cdot R_{t}[b]\right\} .
\end{aligned}
$$

Proof: based upon the uniqueness of the remainder.

The division algorithm is used to find the $G C D$:

Theorem 3 (The Euclidean Algorithm) Let $a<b \in \mathbb{Z}$. Then $d=G C D(a, b)$ can be computed by the iterative algorithm:

$$
\begin{align*}
b & =q_{1} a+r_{1}, 0 \leq r_{1}<a \\
a & =q_{2} r_{1}+r_{2}, 0 \leq r_{2}<r_{1} \\
r_{1} & =q_{3} r_{2}+r_{3}, 0 \leq r_{3}<r_{2} \\
\cdots & \tag{1}\\
r_{n-2} & =q_{n} r_{n-1}+r_{n}, 0 \leq r_{n}<r_{n-1} \\
r_{n-1} & =q_{n+1} r_{n}
\end{align*}
$$

- Now, $d|a, d| b \Rightarrow d\left|r_{1} \Rightarrow d\right| r_{2} \cdots d \mid r_{n}$
- Also, $r_{n}\left|r_{n-1} \Rightarrow r_{n}\right| r_{n-2} \cdots r_{n}\left|a \Rightarrow r_{n}\right| b$.
- Hence, $r_{n} \mid d$ and $d \mid r_{n}$ so $d=r_{n}$.

Corollary: let $a, b \in \mathbb{Z}$. Then there exist integers c and d such that

$$
\begin{equation*}
G C D(a, b)=a c+b d . \tag{2}
\end{equation*}
$$

Proof:

- From proof of Euclidean Algorithm, $G C D(a, b)=r_{n}$
- Solve the linear equations (in the proof) for r_{n} as a linear function of a and b.

4.2.3.2 Constructing finite fields from \mathbb{Z}

- Let q be a positive integer.
- Let $\mathbb{Z} /(q)=\{0,1, \ldots, q-1\}$, the integers modulo q.
- $\mathbb{Z} /(q)$ maps every integer in \mathbb{Z} into an integer between 0 and $q-1$.
- Hence, it decomposes the ring \mathbb{Z} of integers into q semi-infinite cosets!
- For $a, b \in \mathbb{Z} /(q)$, define:

$$
\begin{align*}
a+b & \triangleq R_{q}[a+b] \tag{3}\\
a \cdot b & \triangleq R_{q}[a b] \tag{4}
\end{align*}
$$

Theorem $4 \mathbb{Z} /(q)$ is a ring under the addition and multiplication operations defined above.

Proof: Work through the axioms.

Definition $10 \mathbb{Z} /(q)$ is called the ring of integers modulo q.

Theorem $5 \mathbb{Z} /(q)$ is a field if and only if q is a prime integer.
Proof: See, e.g., Blahut, Sect 4.2.

- Hence, to construct a finite field $G F(p)$ for any prime integer p, form $\mathbb{Z} /(p)$.
- For certain nonprime values of q, a finite field $G F(q)$ can also be constructed.
- This requires the study of rings of polynomials.

4.2.3.3 The Polynomial Ring

Definition 11 A polynomial over $G F(q)$ is an expression

$$
f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\cdots+f_{n-1} x^{n-1}
$$

where $f_{i} \in G F(q), i=0,1,2, \ldots, n-1$.

- degree: $\operatorname{deg}[f(x)]=n-1$.
- $\operatorname{deg}[0]=-\infty$ by convention.
- $f(x)$ is said to be monic whenever $f_{n-1}=1$.
- equality:

$$
f(x)=g(x) \Leftrightarrow f_{i}=g_{i}, i=0,1, \cdots, n-1
$$

Residues in $G F(q)[x]$:

- Notice the analogies with residue theory in \mathbb{Z}.

Definition $12 r(x)$ divides $s(x), r(x) \mid s(x) \Leftrightarrow$ there exists polynomial $a(x)$ such that

$$
a(x) r(x)=s(x)
$$

Definition 13 An irreducible polynomial $p(x)$ is divisible only by scalar α and by $\alpha p(x)$

Definition 14 A prime polynomial is a monic, irreducible polynomial of degree at least 1.

Definition 15 The greatest common divisor $G C D[r(x), s(x)]$ is the monic polynomial of largest degree that divides each.

Notation: The following notation is also used.

$$
G C D[r(x), s(x)]=(r(x), s(x))
$$

Definition 16 The least common multiple $L C M[r(x), s(x)]$ is the monic polynomial of smallest degree that is divisible by each.

Definition $17 r(x)$ and $s(x)$ are said to be relatively prime or coprime if

$$
G C D[r(x), s(x)]=1
$$

Definition 18 The formal derivative of $f(x)$ is:

$$
((n-1)) f_{n-1} x^{n-2}+((n-2)) f_{n-2} x^{n-2}+\cdots+f_{1}
$$

where $((i))=\overbrace{1+1+\cdots+1}^{i}$ is called an integer of the field. ${ }^{\text {a }}$
Lemma: If $r(x) \mid s(x)$ and if $s(x) \mid r(x)$ then $r(x)= \pm s(x)$.

[^0]
The Division Algorithm for Polynomials.

Theorem 6 For every pair of polynomials, $b(x) \neq 0$, and $a(x)$, there exist a unique pair of polynomials, $Q(x)$ (quotient) and $r(x)$ (remainder) such that:

$$
a(x)=Q(x) b(x)+r(x)
$$

where $\operatorname{deg}[r(x)]<\operatorname{deg}[b(x)]$.
Proof: Similar to of the Division Algorithm for Integers; replace the integer value with the degree of the polynomial (Blahut, p. 74).

Recall:

$$
a(x)=Q(x) b(x)+r(x)
$$

Definition 19 We call $R_{b(x)}[a(x)]=r(x)$ the remainder or residue of $a(x)$ modulo $b(x)$ and write

$$
r(x) \equiv a(x) \bmod b(x)
$$

where $\operatorname{deg}[r(x)]<\operatorname{deg}[b(x)]$.

Theorem 7 Let $d(x)=g(x) \cdot h(x)$. Then, for any polynomial $a(x)$,

$$
R_{g(x)}[a(x)]=R_{g(x)}\left\{R_{d(x)}[a(x)]\right\}
$$

Proof: Divide $a(x)$ by $d(x)$:

$$
\begin{aligned}
a(x) & =Q_{1}(x) d(x)+R_{d(x)}[a(x)] \\
& =Q_{1}(x) g(x) h(x)+R_{d(x)}[a(x)]
\end{aligned}
$$

and

$$
R_{g(x)}[a(x)]=R_{g(x)}\left\{R_{d(x)}[a(x)]\right\}
$$

Theorem 8

$$
\begin{aligned}
R_{d(x)}[a(x)+b(x)] & =R_{d(x)}[a(x)]+R_{d(x)}[b(x)] \\
R_{d(x)}[a(x) \cdot b(x)] & =R_{d(x)}\left\{R_{d(x)}[a(x)] \cdot R_{d(x)}[b(x)]\right\}
\end{aligned}
$$

Proof: As with the residues, use the division algorithm and equate the remainders. (Blahut, p. 74)

The Unique Factorization Theorem for Polynomials

Theorem 9 Any monic polynomial over a field can be uniquely factored into monic irreducible polynomials over that field.

Proof: Blahut, p.75. This generalizes the well-known UFT for integers:

$$
a \in \mathbb{Z} \Rightarrow a=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}
$$

for some finite n.

Theorem 10 (The Euclidean Algorithm for Polynomials.) Let $a(x), b(x) \subset G F(q)[x]$ and $\operatorname{deg}[a(x)]<\operatorname{deg}[b(x)]$. Then $G C D[a(x), b(x)]$ can be found by the iterative algorithm:

$$
\begin{aligned}
b(x) & =Q_{1}(x) a(x)+r_{1}(x) \\
a(x) & =Q_{2}(x) r_{1}(x)+r_{2}(x) \\
r_{1}(x) & =Q_{3}(x) r_{2}(x)+r_{3}(x) \\
\cdots & \\
r_{n-2}(x) & =Q_{n}(x) r_{n-1}(x)+r_{n}(x) \\
r_{n}(x) & =Q_{n+1}(x) r_{n}(x)
\end{aligned}
$$

and $\alpha \cdot G C D[a(x), b(x)]=r_{n}(x)$, where $\alpha \in G F(q)$.

Proof: of Euclidean Theorem for Polynomials parallels that for the integers (Blahut, p.76).

Theorem 11 (The Fundamental Theorem of Algebra) Let $\operatorname{deg}[f(x)]=n$. Then, $f(x)$ has at most n zeros and $f(\alpha)=0$ if and only if $(x-\alpha) \mid f(x)$.

Proof: See text.

4.2.3.4 Finite Fields from Polynomial Rings

- By analogy with $\mathbb{Z} /(q)$, we use quotients in $G F(q)[x]$ to construct finite fields.
- This permits construction of fields not possible using integer residues.
- For notational simplicity, let $\mathbb{F}_{q} \triangleq G F(q)$. be any finite field having q elements.

Now, consider $p(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}[p(x)]>0$.

Definition 20 The polynomials modulo $p(x)$ over \mathbb{F}_{q} :

$$
\mathbb{F}_{q}[x] /(p(x)) \triangleq\{f(x): \text { s.t. } \operatorname{deg}[f(x)]<\operatorname{deg}[p(x)]\}
$$

Now divide:

$$
\begin{aligned}
g(x) & =Q_{g}(x) \cdot p(x)+r_{g}(x) \\
h(x) & =Q_{h}(x) \cdot p(x)+r_{h}(x)
\end{aligned}
$$

Then

- $r_{g}(x), r_{h}(x) \in \mathbb{F}_{q}[x] /(p(x))$.
- If $r_{g}(x)=r_{h}(x)$, then we write

$$
g(x) \equiv h(x)(\bmod p(x))
$$

even if $g(x) \neq h(x)$.

Theorem $12 \mathbb{F}_{q}[x] /(p(x))$ is a ring.
Proof: Test the addition and multiplication axioms mod $p(x)$.
Theorem $13 \mathbb{F}_{q}[x] /(p(x))$ is a field if and only if $p(x)$ is irreducible. Proof: Many texts.

- Clearly $\mathbb{F}_{q}[x]$ contains q^{m} elements where $m=\operatorname{deg}[p(x)]$.
- We call this field, $G F\left(q^{m}\right)$ or $F_{q^{m}}$.
- So any prime polynomial $p(x)$ can generate a field.

Compare:

- $p(x) \in \mathbb{F}_{q}[x]$.
- $\mathbb{F}_{q}[x] /(p(x))$ is $\mathbb{F}_{q^{m}} \equiv G F\left(q^{m}\right)$ for prime $p(x)$.
- $\mathbb{F}_{q^{m}}$ is an extension field of \mathbb{F}_{q}.
- $\mathbb{F}_{q} \equiv G F(q)$ is a subfield of $\mathbb{F}_{q^{m}} \equiv G F\left(q^{m}\right)$.

Example: Let $p(x)=x^{2}+x+1$

- $p(x)$ is prime over \mathbb{F}_{2} (verify). So,
- $\mathbb{F}_{2}(x) /(p(x))$ is a field with $2^{2}=4$ elements and
$-"+"$ and " \times " mod $p(x)$
- Members (polynomials of degree <2):

0	0
1	x
x	
$x+1$	x^{1}

Important note: Although elements of nonprime fields are polynomials, now that we can write down the + and \times tables, we can use any convenient notation. For example, in $G F(8)$ we can use the symbols $0,1, \ldots, 7$ so long as we don't confuse the field with \mathbb{Z}_{8}.

Lemma: The nonzero elements of $G F(q)$ form a multiplicative group. Proof: Obvious

- Suppose $1, \beta, \beta^{2}, \cdots \in G F(q)$ where order of $\beta=m$.
- Then, $m \mid q-1$ (from coset decomposition).

Definition 21 An element of $G F(q)$ of order $q-1$ is a primitive element of $G F(q)$

Lemma: If α is primitive in $G F(q)$, then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}\right\}$ are all the nonzero elements of $G F(q)$.

Proof: From definition of primitive.

Theorem 14 Let $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{q-1}\right\}$ be the non-zero elements of $G F(q)$. Then

$$
x^{q-1}-1=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{q-1}\right)
$$

Proof:

- For $1 \leq j \leq(q-1)$ and $\beta_{j} \in G F(q)$

$$
m_{j} \mid q-1
$$

Therefore

$$
\beta_{j}^{q-1}=\left(\beta_{j}^{m_{j}}\right)^{\frac{q-1}{m_{j}}}=(1)^{\frac{q-1}{m_{j}}}=1
$$

so that β_{j} is a zero of $x^{q-1}-1$.

Theorem $15 G F(q)$ always contains a primitive element.
Proof:

- The non-zero elements form a cyclic group.
- Therefore, there is an element of order $q-1$.

Definition 22 A primitive polynomial is an irreducible polynomial $p(x)$ of degree m over $G F(q)$ having a primitive element of $G F\left(q^{m}\right)$ as a root.

This definition means that, if:

1. $p(x)$ is irreducible over $G F(q)$,
2. α is primitive in $G F\left(q^{m}\right)$, and
3. $p(\alpha)=0$,
then,

- $p(x)$ is a primitive polynomial and

$$
\alpha^{q^{m}-1}=1 .
$$

Example of generating a nonprime field

Let

- $p(x)=x^{4}+x+1 \in G F(2)$ be primitive (can verify - How?).
- α be primitive in $G F\left(2^{4}\right)$ and $p(\alpha)=0$. Then,

$$
\begin{equation*}
\alpha^{4}+\alpha+1=0 \tag{5}
\end{equation*}
$$

From (5) we can write:

$$
\begin{aligned}
& \alpha^{4}=1+\alpha \\
& \alpha^{5}=\alpha+\alpha^{2}
\end{aligned}
$$

etc. The complete set of powers of α follows.
(C)2004, A. Brinton Cooper III

$$
\begin{aligned}
& \alpha^{0}=1 \\
& \alpha^{1}=\quad \alpha \\
& \alpha^{2}=\quad \alpha^{2} \\
& \alpha^{3}= \\
& \alpha^{4}=1+\alpha \\
& \alpha^{5}=\quad \alpha+\alpha^{2} \\
& \alpha^{6}=\quad \alpha^{2}+\alpha^{3} \\
& \alpha^{7}=1+\alpha+\alpha^{3} \\
& \alpha^{8}=1+\alpha^{2} \\
& \alpha^{9}=\quad \alpha \quad+\alpha^{3} \\
& \alpha^{10}=1+\alpha+\alpha^{2} \\
& \alpha^{11}=\quad \alpha+\alpha^{2}+\alpha^{3} \\
& \alpha^{12}=1+\alpha+\alpha^{2}+\alpha^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{13}=1 \quad+\alpha^{2}+\alpha^{3} \\
& \alpha^{14}=1 \\
& \alpha^{15}=1
\end{aligned}
$$

Exercise: Generate $G F\left(2^{4}\right)$ using a different primitive polynomial. Do you get the same field?

4.2.3.5 The Structure of $G F(q)$

- We seek to do "arithmetic" in $G F(q)$.

Definition 23 The characteristic of $G F(q)$ is the number of elements in its smallest subfield.

Example: The characteristic of $G F(16)$ is 2 .

Theorem 16 Every finite field $G F(q)$ contains a unique, smallest subfield that contains a prime number of elements.

Proof:

- Every $G F(q)$ contains 0 and 1 .
- Let $G \triangleq\{0,1,2, \ldots, r-1\}$, where $i=\underbrace{1+1+\cdots+1}_{i \text { times }}$,
- So G is a cyclic additive, finite subgroup of $G F(q)$ of order r.
- Hence, addition in G is modulo r.
- For $i, j \in G$,

$$
\begin{aligned}
i \cdot j & =(1+1+\cdots+1) \cdot j \\
& =(j+j+\cdots+j)
\end{aligned}
$$

- Therefore " \times " is modulo r as well.
- Since G is
- cyclic,
- of order r
- having modulo r operations" + " and " \times ",
- then it is by an earlier proof, a prime field of size r.
- Since it is prime, it has no subfield, and the theorem is proved.

Corollary: The characteristic of any Galois field is prime. Proof: Follows immediately from the previous construction

Corollary: In a field of characteristic $p,(a+b)^{p}=a^{p}+b^{p}$. Proof:

$$
(a+b)^{p}=a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\cdots+\binom{p}{p-1} a b^{p-1}+b^{p}
$$

But

$$
\binom{p}{j}=0 \quad \bmod \quad p \forall j
$$

and the lemma is proved.

Example (continued)

Arithmetic in $G F\left(2^{4}\right)$ is performed in this manner:

- $(\times): \alpha^{j} \times \alpha^{k}=\alpha^{j+k}\left(\bmod 2^{4}-1\right)$.
- (+): From the table,

$$
\begin{aligned}
\alpha^{5}+\alpha^{9} & =\alpha+\alpha^{2}+\alpha+\alpha^{3} \\
& =\alpha^{2}+\alpha^{3} \\
& =\alpha^{6} .
\end{aligned}
$$

More on Extension Fields

- Let $G F(q)$ be a subfield of $G F(Q)$ and $\beta \in G F(Q)$. Then,

Definition 24 The minimal polynomial $m_{\beta}(x)$ of β over $G F(q)$ is the prime polynomial of smallest degree over $G F(q)$ for which $m_{\beta}(\beta)=0$.

Theorem 17 Two-part theorem:

- I: Every $\beta \in G F(Q)$ has a unique minimal polynomial over $G F(q)$.
- II: If $m(x)$ is the minimal polynomial of β and if $g(\beta)=0$, then $m(x) \mid g(x)$.

Proof: See text.

Corollary: If $m_{1}(x), \cdots, m_{k}(x)$ are the minimal polynomials over $G F(q)$ for all the elements of $G F(Q)$, then

$$
x^{Q}-x=\prod_{i=1}^{k} m_{i}(x)
$$

Proof: β is always a zero of $x^{Q}-x$, so this is true by UFT.

Theorem 18 For any $g(x)$ over $G F(q)$, there exists an extension field $G F(Q)$ in which $g(x)=\Pi\left(x-\beta_{i}\right)$.

Proof: See text.
Definition 25 A splitting field of $g(x) \in \mathbb{F}_{q}[x]$ is any extension $G F(Q)$ of $G F(q)$ in which $g(x)$ factors into linear and constant terms only.

Theorem 19 Let α be primtive in $G F(Q)$, an extension of $G F(q)$ and let $\operatorname{deg}\left[m_{\alpha}(x)\right]=m$. Then

- $Q=q^{m}$, and
- Any $\beta \in G F(Q)$ can be written as

$$
\beta=b_{m-1} \alpha^{m-1}+\cdots+b_{1} \alpha+b_{0}, \quad b_{i} \in G F(q) .
$$

Note: Therefore, $G F(Q)$ is a vector space over $G F(q)$.

Proof: See text.

The following follow directly from the theorem and are computationally useful.

- For every prime number p and positive integer m, there exists a finite field of size p^{m}.
- $\operatorname{In} G F(q), q=p^{m},(a+b)^{q}=a^{q}+b^{q}$.
- The smallest splitting field of the polynomial $x^{p^{m}}-x$ has exactly p^{m} elements.

4.3 Viewing Cyclic codes from Extension Fields An Example

- For α primitive in $G F\left(2^{3}\right)$, let

$$
\begin{aligned}
p(x) & =x^{3}+x+1 \\
p(\alpha) & =0 \\
H & =\left[\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right]
\end{aligned}
$$

- Expanding powers of α, write H in binary form:

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

i.e., $\alpha^{3}=1+\alpha$, etc.

- Let \mathbf{H} be check matrix of some binary code \mathcal{C}.
- For $\mathbf{c} \in \mathcal{C}$,

$$
\begin{aligned}
\mathbf{c} \cdot \mathbf{H}^{T} & =0 . \\
\sum_{i=0}^{n-1} c_{i} \alpha^{i} & =0 \\
c(\alpha) & =0
\end{aligned}
$$

which defines a polynomial $c(x)$ having α as a root.

- Thus we establish the correspondence between codewords and polynomials
- Note: H is the check matrix of the binary, Hamming $(7,4)$ code.

In general,

- Let \mathbf{H} be $(n-k) \times n q$-ary matrix s.t. $m \mid(n-k)$.
- Represent the first m rows of \mathbf{H} as a single row of symbols from $G F\left(q^{m}\right),\left(\beta_{11}, \ldots, \beta_{1 n}\right)$. Repeat for every set of m rows.

$$
\mathbf{H}=\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \cdots & \beta_{1 n} \\
\beta_{11} & \beta_{12} & \cdots & \beta_{2 n} \\
\vdots & & & \\
\beta_{\rho 1} & \beta_{\rho 2} & \cdots & \beta_{\rho n}
\end{array}\right]
$$

where

$$
\rho=\frac{n-k}{m}
$$

This is not new, merely more compact. However,...

- Consider the special case where $B_{i j}=\gamma_{i}^{j-1}$.
- Then the $i^{\text {th }}$ row of \mathbf{H} can be written: $\gamma_{i}^{0}, \gamma_{i}^{1}, \ldots, \gamma_{i}^{n-1}$, for
$-i=1, \ldots, \rho$ and
$-n=q^{m}-1$.

$$
\mathbf{H}=\left[\begin{array}{cccc}
\gamma_{1}^{0} & \gamma_{1}^{1} & \cdots & \gamma_{1}^{n-1} \\
\gamma_{2}^{0} & & & \\
\vdots & & & \\
\gamma_{\rho}^{0} & & & \gamma_{\rho}^{n-1}
\end{array}\right]
$$

- For some $\mathbf{c} \in \mathcal{C}$

$$
\begin{aligned}
\mathbf{c} H^{T} & =0 \\
\sum_{i=1}^{n-1} c_{i} \gamma_{j}^{i} & =0, j=1, \cdots, \rho
\end{aligned}
$$

- So \mathcal{C} is all $c(x)$ of degree $\leq n-1$ s.t. $c\left(\gamma_{i}\right)=0, i=1, \ldots, \rho$
- and \mathbf{H} is the check matrix of the code \mathcal{C}, where

$$
\mathcal{C}=\left\{c(x) \text { s.t., } \operatorname{deg}[c(x)] \leq n, c\left(\gamma_{j}\right)=0, j=1, \ldots, \rho .\right.
$$

- \Rightarrow But we have not shown that \mathcal{C} is cyclic. \Leftarrow

4.4 Cyclic Codes, Formally
 4.4.1 Algebraic Description of Cyclic Codes

Definition $26 \mathbb{F}_{q}[x] \triangleq$ the ring of polynomials over $G F(q)$.

Definition $27 \mathbb{F}_{q}[x] /\left(x^{n}-1\right) \triangleq$ the ring of polynomials over $G F(q)$ $\bmod \left(x^{n}-1\right)$.

Definition 28 A subset I of any ring \mathbf{R} is an ideal if

- it is a subgroup of the additive group of \mathbf{R}, and
- $r \in \mathbf{R}$ and $a \in I \Rightarrow a r \in I$.

Clearly $c(x) \in \mathbb{F}_{q}[x] /\left(x^{n}-1\right) \Rightarrow \operatorname{deg}[c(x)] \leq n-1$
and,

Lemma: $x c(x) \in \mathbb{F}_{q}[x] /\left(x^{n}-1\right)$.

Proof: See text.
So,

- Associate n-tuple $\mathbf{c} \in s C$ with $c(x) \in \mathbb{F}_{q}[x] /\left(x^{n}-1\right)$.
- All such codewords c, then, are cyclic.
- $x c(x)$ is the cyclic shift of $c(x)$.

Notation: \mathcal{C} represents both the codewords $\{\mathbf{c}\}$ and the polynomials $\{c(x)\}$.

Theorem $20 \mathcal{C}$ is a q-ary linear cyclic code of length n if and only if the $\{c(x)\} \in \mathcal{C}$ form an ideal in $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$.

Simply put, a cyclic code of block length n is an ideal in the ring of polynomials modulo $x^{n}-1$.

Proof:
Case i (if): Assume 1 and 2 are true. Then \mathcal{C} is:

- closed under + .
- closed under mult by any scalar (where $a(x)$ is a "scalar.")
- therefore, is a subspace, therefore a code.
- If $a(x)=x, \mathcal{C}$ is cyclic.

Case ii (only if): Assume \mathcal{C} is a cyclic code. Then it is

- a subspace;
- closed under
$-+$
- multiplication by a scalar, specifically -
- multiplication by x.
- and, therefore, under multiplication by arbitrary polynomial $a(x)$.
\square

4.4.2 Generating Cyclic Codes

Lemma: Given an ideal \mathcal{I} of $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$. The non-zero monic polynomial $g(x)$ of smallest degree in \mathcal{I} is unique.
Proof:

- Let $\operatorname{deg}[g(x)]=r$.
- Select $\alpha \in \mathbb{F}_{q}$ so that $\alpha g(x)$ is monic. Note that $\alpha g(x) \in \mathcal{I}$.
- Suppose another monic $f(x) \in \mathcal{I}$ with $\operatorname{deg}[f(x)]=r$.
- Then $f(x)-g(x) \in \mathcal{I}$.
- But $\operatorname{deg}[f(x)-g(x)] \leq \operatorname{deg}[g(x)]$.
- This contradicts our choice of $g(x)$.
- Therefore $g(x)$ is as claimed.

Definition 29 : The non-zero polynomial $g(x)$ of smallest degree in ideal \mathcal{I} is called the generator polynomial of the ideal.

Theorem 21 A cyclic code consists of all multiples of its generator polynomial $g(x)$ by polynomials $a(x)$ of degree $\leq k-1$.

Proof:

- If $g(x) \in \mathcal{C}$, then $a(x) g(x) \in \mathcal{C} \forall a(x)$.
- Suppose $c(x) \in \mathcal{C}$, and suppose:

$$
c(x)=Q(x) g(x)+s(x)
$$

- But $c(x) \in \mathcal{C}$, and $Q(x) g(x) \in \mathcal{C} \Rightarrow s(x) \in \mathcal{C}$. But

$$
\operatorname{deg}[s(x)]<\operatorname{deg}[q(x)]
$$

Yet $g(x)$ is the polynomial of smallest degree in \mathcal{C}. Hence, $s(x) \equiv 0$

Theorem 22 : A cyclic code \mathcal{C} of length n and generator polynomial $g(x)$ exists if and only if $g(x) \mid\left(x^{n}-1\right)$.

Proof:

- Suppose $\mathcal{C}=<g(x)>$ but

$$
\begin{aligned}
x^{n}-1 & =Q(x) g(x)+s(x), \operatorname{deg}[s(x)<\operatorname{deg}[g(x)] \\
R_{x^{n}-1}\left(x^{n}-1\right)=0 & =R_{x^{n}-1}[Q(x) g(x)]+R_{x^{n}-1}[s(x)] \\
& =R_{x^{n}-1}[Q(x) g(x)]+s(x)
\end{aligned}
$$

- Since $R_{x^{n}-1}[Q(x) g(x)] \in \mathcal{C}$, then $s(x) \in \mathcal{C}$.
- But: $\operatorname{deg}[s(x)]<\operatorname{deg}[g(x)]$, so $s(x) \equiv 0$ and $g(x) \mid\left(x^{n}-1\right)$.
- Conversely, every $g(x) \mid\left(x^{n}-1\right)$ can generate a code.

4.4.3 Parity Check Polynomial

Definition 30 : Let $x^{n}-1=g(x) h(x)$. If $g(x)$ generates a code, then we call $h(x)$ the parity check polynomial of the code.

Lemma: For every $c(x) \in \mathcal{C}$

$$
R_{x^{n}-1}[h(x) c(x)]=0
$$

Proof:

- For some $a(x)$

$$
h(x) c(x)=h(x) g(x) a(x)=\left(x^{n}-1\right) a(x)
$$

4.4.4 Error Polynomial

- Transmit q-ary codeword $c(x) \in \mathcal{C}$ over noisy channel.
- Receive vector $v(x)$
- Both are in $\mathbb{F}_{q}[x] /\left(x^{n}-1\right)$.

Definition 31: The error polynomial is the difference $v(x)-c(x)$ between received and transmitted polynomials.
i.e.,

$$
v(x)=c(x)+e(x)
$$

This is a model for the class of additive noise channels.

Definition 32: The information encoded by \mathcal{C} is represented by a polynomial $a(x), \quad \operatorname{deg}[a(x)] \leq k-1$.

- $c(x)=a(x) g(x) \quad \bmod x^{n}-1$
- $\mathcal{C}=\{c(x)=a(x) g(x)\}$ is not systematic in (try it!).

Lemma: $c(x)$ belongs to a systematic, cyclic code if

$$
c(x)=x^{n-k} a(x)+t(x)
$$

where $t(x)$ is chosen so that $c(x) \equiv 0 \bmod x^{n}-1$.
Proof: Exercise

4.5 Explicit Constructions of Cyclic Codes

- Objective: To find an explicit construction of $g(x)$ for cyclic code of length n.

Consider the prime factorization:

$$
\begin{aligned}
x^{n}-1 & =f_{1}(x) f_{2}(x) \cdots f_{s}(x) \\
& =\prod_{i=1}^{s} f_{i}(x)
\end{aligned}
$$

- Select some factors of $x^{n}-1$:

$$
g(x)=f_{i_{1}}(x) \cdot f_{i_{2}}(x) \cdots f_{i_{j}}(x), j=1,2, \cdots, s .
$$

- How many such $g(x)$ can we form?
- 2^{s} possibilities;
- Eliminate choosing no factors.
- Eliminate choosing all factors.
$-\Rightarrow 2^{s}-2$ possiblities.

4.5.1 Finding a Generator Polynomial $g(x)$

We consider two ways to specify $g(x)$, by its factors and by its roots.

$$
\begin{equation*}
x^{q^{m}-1}-1=\prod f_{i}(x) \tag{6}
\end{equation*}
$$

- This prime factorization is unique.
- $\beta_{j} \neq 0 \in G F\left(q^{m}\right)$ is a root of (6).
- And we can factor each $f_{i}(x)$ in $G F\left(q^{m}\right)$:

$$
x^{q^{m}-1}-1=\prod_{i=1}^{s} f_{i}(x)=\prod_{j=1}^{q^{m}-1}\left(x-\beta_{j}\right)
$$

- Each β_{ρ} will be a zero of exactly one such polynomial.
- Each $f_{i}(x)$ is the polynomial of smallest degree such that $f_{i}\left(\beta_{j}\right)=0$.

Theorem 23: A polynomial $c(x)$ is a codeword in a primitive code if and only if all the roots of $g(x)$ are also roots of $c(x)$.

Proof:

Let $\left\{\beta_{j}\right\}$ be the set of roots of $g(x)$.

- Every codeword $c(x)=a(x) g(x)$. Therefore

$$
c\left(\beta_{j}\right)=a\left(\beta_{j}\right) g\left(\beta_{j}\right)=0
$$

- Conversely let $c\left(\beta_{j}\right)=0$. Divide by $m_{\beta_{j}}(x)$:

$$
\begin{aligned}
c(x) & =Q(x) m_{\beta_{j}}(x)+r(x) \\
c\left(\beta_{j}\right) & =0=Q\left(\beta_{j}\right) m_{\beta_{j}}\left(\beta_{j}\right)+s\left(\beta_{j}\right) \\
s(x) & =0
\end{aligned}
$$

because $\operatorname{deg}[s(x)]<\operatorname{deg}\left[m_{\beta_{j}}(x)\right]$.

Example: Find all binary cyclic codes of length $n=15$.

$$
\begin{aligned}
x^{15}-1= & (x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right) \\
& \cdot\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right) \\
= & f_{1}(x) f_{2}(x) f_{3}(x) f_{4}(x) f_{5}(x)
\end{aligned}
$$

- There are 5 factors, so $2^{5}-2$ nontrivial binary cyclic codes.
- Example:(continued) Let $g(x)=f_{4}(x) f_{5}(x)$:

$$
g(x)=x^{8}+x^{4}+x^{2}+x+1
$$

- $f_{4}(x)$ is primitive (verify), so one of its roots α is primitive in $G F\left(2^{4}\right)$.
- Also α^{3} is a root of $f_{5}(x)$ (verify).
- Therefore the roots of $g(x)$ include α, α^{3}.
$-\operatorname{deg}[g(x)]=8=n-k$, so $k=7$.
$-w_{H}[g(x)]=5$ (see above) so $d_{\min } \leq 5$.
- Generally, if we want $g\left(\beta_{i}\right)=0, i=1, \cdots, r$:
- we must find $m_{\beta_{1}}(x), \cdots, m_{\beta_{r}}(x)$.
- Set

$$
g(x)=L C M\left[m_{\beta_{1}}(x), \cdots, m_{\beta_{r}}(x)\right]
$$

and $g(x)$ is as desired.

- How do we find $m_{\beta_{j}}$? (See next Theorem.)

Exercise: If $\operatorname{deg}\left[m_{\beta}(x)\right]=h$ and $m_{\beta}(\beta)=0$ what are the other $h-1$ other zeros of $m_{\beta}(x)$?

Theorem 24 : If β is an element of $G F\left(q^{m}\right)$ with minimal polynomial $m_{\beta}(x)$ over $G F(q)$, then $m_{\beta}(x)$ is also the minimal polynomial of β^{q}. Proof: Text.

Definition 33 : Two elements of $G F\left(q^{m}\right)$ having the same minimal polynomial over $G F(q)$ are said to be conjugates with respect to $G F(q)$.

- So β and β^{q} are conjugates by the theorem.
- So are $\beta^{q^{2}}, \cdots, \beta^{q^{r-1}}$ where r is the smallest integer such that $\beta^{q^{r}}=\beta$.
- This leads directly to ...

Theorem $25 m_{\beta}(x)=(x-\beta)\left(x-\beta^{2}\right) \cdots\left(x-\beta^{q^{r-1}}\right)$.
Proof:

- All the conjugates of β are roots.
- Must show that the coefficients of $m_{\beta}(x)$ lie in $G F(q)$.

$$
\begin{aligned}
{\left[m_{\beta}(x)\right]^{q} } & =(x-\beta)^{q} \cdots\left(x-\beta^{q^{r-1}}\right)^{q} \\
& =\left(x^{q}-\beta^{q}\right) \cdots\left(x^{q}-\beta^{q^{r}}\right) \\
& =\left(x^{q}-\beta^{q}\right) \cdots\left(x^{q}-\beta\right) \\
& =m_{\beta}\left(x^{q}\right) \\
& =\sum m_{i \beta} x^{i q}
\end{aligned}
$$

But also, by the theorem:

$$
\left[m_{\beta}(x)\right]^{q}=\sum m_{i \beta}^{q} x^{i q}
$$

Therefore $m_{i \beta}^{q}=m_{i \beta}$.

Summary of foregoing:

- Given a field $G F(q)$, select blocklength n.
- Using primitive element, find minimal polynomial and conjugate roots.
- Add additional roots if needed to obtain desired k.
- Write down $g(x)$.

4.5.2 Non-primitive Cyclic Codes.

Definition 34 For a code over $G F(q)$, a blocklength of the form $n=q^{m}-1$ is called a primitive blocklength.

A cyclic code of such length is called a primitive cyclic code.

Lemma: n divides $q^{m}-1$ for some m.
Theorem 26 : Given $G F(q)$ and integer n relatively prime to q. Then there exists an integer m for which

$$
\left(x^{n}-1\right) \mid\left(x^{q^{m}-1}-1\right)
$$

Then $x^{n}-1$ has m distinct roots in $G F\left(q^{m}\right)$.

4.5.3 Summary: How to Describe any Cyclic Code

- A cyclic code of (given) length n over $G F(q)$ is generated by $g(x)$ where

$$
g(x) \mid\left(x^{n}-1\right)
$$

- To get $g(x)$, select primitive element $\alpha \in G F\left(q^{m}\right)$, where

$$
\begin{aligned}
q^{m}-1 & =n b \\
\alpha^{n b} & =1
\end{aligned}
$$

- Determine the minimal polynomial $m_{\alpha}(x)$ over $G F(q)$.
- Then $m_{\alpha}(x) \mid g(x)$.
- For lower rate code, find another root, $\hat{\alpha}$ and write

$$
g(x)=L C M\left(m_{\alpha}(x), m_{\hat{\alpha}}(x)\right) .
$$

Note: We can (and will) say more about how to design \mathcal{C} to have given rate or minimum distance.

4.6 Matrix Description of Cyclic Codes

 4.6.1 Formal Method- Let $g(x) \in \mathbb{F}_{q}[x]$ have zeros $\gamma_{i}, i=1, \ldots, r$ in $G F\left(q^{m}\right)$.
- If $c(x)$ is a codeword, $c\left(\gamma_{i}\right)=0, i=1, \ldots, r$, or

$$
\sum_{j=0}^{n-1} c_{j} \gamma_{i}^{j}=0, i=1, \ldots, r
$$

- Since there is \mathbf{H} for which $\mathbf{c} H^{T}=0$, this suggests:

$$
\mathbf{H}^{T}=\left[\begin{array}{cccc}
\gamma_{1}^{0} & \gamma_{2}^{0} & \cdots & \gamma_{r}^{0} \\
\gamma_{1}^{1} & \gamma_{2}^{1} & \cdots & \gamma_{r}^{1} \\
\gamma_{1}^{2} & \gamma_{2}^{2} & \cdots & \gamma_{r}^{2} \\
\cdots & & & \\
\gamma_{1}^{n-1} & \gamma_{2}^{n-1} & \cdots & \gamma_{r}^{n-1}
\end{array}\right]
$$

over $G F\left(q^{m}\right)$.

- Can write $\gamma_{i}^{j}=\left(\gamma_{i 0}, \gamma_{i 1}, \ldots, \gamma_{i(n-1)}\right), \gamma_{i \sigma} \in G F(q)$.
- Then replace each element in \mathbf{H} by a column m-tuple over $G F(q)$.
- This gives a matrix having dimensions $r m \times n$ over $G F(q)$.
- Note: Remove linearly dependent rows.
- This gives \mathbf{H} matrix over $G F(q)$.

This is a cumbersome algorithm.

4.6.2 A Direct Method

- Use the generator $g(x)$:

$$
c(x)=a(x) g(x)
$$

where,

$$
\begin{aligned}
& g(x)=\sum_{j=0}^{n-k} g_{j} x^{j} \\
& a(x)=\sum_{i=0}^{k-1} a_{i} x^{i}
\end{aligned}
$$

- Consider coefficients of $\mathbf{c}=\mathbf{a} G$:

$$
\begin{gathered}
c(x)=a(x) g(x)=\sum_{i=0}^{k-1} \sum_{j=0}^{n-k} a_{i} g_{j} x^{i+j} \\
=\quad a_{0} g_{0}+\left(a_{1} g_{0}+a_{0} g_{1}\right) x+\cdots \\
\quad+\left(a_{k-2} g_{n-k}+a_{k-1} g_{n-k-1}\right) x^{n-2}+a_{k-1} g_{n-k} x^{n-1} \\
\mathbf{c}=\left(a_{k-1} g_{n-k},\left(a_{k-2} g_{n-k}+a_{k-1} g_{n-k-1}\right), \cdots\left(a_{1} g_{0}+a_{0} g_{1}\right), a_{0} g_{0}\right), \\
\left(a_{0}, a_{1}, \cdots, a_{k-1}\right)
\end{gathered}\left[\begin{array}{ccccc}
0 & 0 & \cdots & g_{1} & g_{0} \\
0 & 0 & \cdots & g_{0} & 0 \\
\vdots & & & & \\
0 & g_{n-k} & \cdots & 0 & 0 \\
g_{n-k} & g_{n-k-1} & \cdots & 0 & 0
\end{array}\right] .
$$

Or,

$$
\mathbf{G}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & g_{1} & g_{0} \\
0 & 0 & \cdots & g_{0} & 0 \\
\vdots & & & & \\
0 & g_{n-k} & \cdots & 0 & 0 \\
g_{n-k} & g_{n-k-1} & \cdots & 0 & 0
\end{array}\right]
$$

- Recall $x^{n}-1=g(x) h(x)$
- For any codeword $c(x)$

$$
R_{x^{n}-1}[c(x) h(x)]=0
$$

- As above, we can use $h(x)$ to write:

$$
\mathbf{H}=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & \cdots & h_{0} & h_{1} & \cdots & h_{k-1} & h_{k} \\
\cdots & & & & & & & & \cdots \\
0 & h_{0} & h_{1} & \cdots & h_{k-1} & h_{k} & 0 & \cdots & 0 \\
h_{0} & h_{1} & h_{2} & \cdots & 0 & 0 & \cdots & 0 &
\end{array}\right]
$$

- To show that $\mathbf{G} H^{T}=\mathbf{0}$:
- The product of $s^{\text {th }}$ row of \mathbf{G} and $t^{t h}$ column of \mathbf{H}^{T} has the form

$$
u_{r}=\sum_{i=0}^{r} g_{r-i} h_{i}=0,1 \leq r \leq n-1,
$$

- and u_{r} is the coefficient of x^{r} in $g(x) \cdot h(x)=x^{n}-1$.
- Hence, $u_{r}=0$ unless $r=0$ or n.

Hence, $\mathbf{G} H=0$ and \mathbf{H} is the parity check matrix.

4.6.3 The Dual Code

- The check matrix \mathbf{H} of the code generated by \mathbf{G} has the form of a generator matrix for a cyclic code.
- Therefore, the dual of a cyclic code is a cyclic code.
- Examining the order of coefficients in \mathbf{H} shows that the dual code is generated by

$$
\begin{gathered}
\tilde{h}(x)=x^{k} h\left(x^{-1}\right) \\
\text { STOP }
\end{gathered}
$$

[^0]: ${ }^{\text {a }}$ When there is no confusion, we will write i for $((i))$.

