## **3. Linear Block Codes** 3.1 Limitations

**Problem:** As presented, block codes have no "helpful" structure.

- How can one **design** a code for a given  $d_{min}, R, n$ ?
- How can one find the **best** such code?
- To **encode** requires online storage of all the code words.
- To decode requires exponentially complex table lookup.

## Challenge

- Encode information i = (i<sub>0</sub>, i<sub>1</sub>, ..., i<sub>k-1</sub>) into code word
   c = (c<sub>0</sub>, c<sub>1</sub>, ..., c<sub>n-1</sub>)
   c = f(i).
- Estimate transmitted information from received vector
   y = (y<sub>0</sub>,..., y<sub>n-1</sub>):

$$D:\mathbf{y}\to\hat{\mathbf{i}}$$

both subject to constraints that

- $f(\cdot)$  be a *linear* transformation and
- *D* be an *efficient* algorithm.

## But

• The canonical form of a linear transformation is:

$$\mathbf{c} = \mathbf{i}\mathbf{G}$$

where  ${\bf G}$  is a  $k\times n$  matrix, and

• all the codewords  $\{c\}$  are distinct when the rank of G is k.

So, if

$$\mathbf{y} = \mathbf{c} + \mathbf{e}$$

there is hope of extracting  ${\bf i}$  with an algorithm of moderate complexity.

Λ

#### 3.2 Basic Definitions

**Definition 1** A linear block code is a k-dimensional vector subspace of the n-tuples over a field.

For now,

**Definition 2** A field is a set of elements in which one can do "ordinary arithmetic" without leaving the set. In a finite field, the set is of finite order.

n = block length k = dimension  $M = q^k$  GF(q) = symbol field (more later)Terminology: "(n,k) block code."

## **Lemma:** The code rate of an LBC is

$$R = \frac{k}{n},$$

*bits/symbol or bits/use\_of\_the\_channel.* 

*Proof:* Follows from the definition for a block code.

#### **3.3 Basic Properties of LBCs**

#### Lemma

The linear combination of any subset of codewords is a codeword.

Proof: Follows from subspace definition.

**Note:** Many of the basic properties of an LBC, including manipulation of its generator matrix, directly follow from its nature as a vector subspace, and surely have been well covered in Linear Algebra.

**Definition 3** The minimum weight of a linear block code is:

$$w_{min}(\mathcal{C}) = \min_{\mathbf{c}\in\mathcal{C}} w_H(\mathbf{c}).$$

**Theorem 1** For a linear block code (LBC),  $d_{min} = w_{min}$ . Proof:

$$d_{min} = \min_{\mathbf{c}_i, \mathbf{c}_j \in \mathcal{C}} d(\mathbf{c}_i, \mathbf{c}_j)$$

$$= \min w_H(\mathbf{c}_i - \mathbf{c}_j)$$
  
= min w\_H(\mathbf{c}\_k) for some k(by linearity)

**Corollary:** An LBC can detect any error pattern for which

 $w_H(e) \le d_{min} - 1.$ 

#### Lemma:

#### The **undetectable** error patterns for an LBC are

- independent of the codeword transmitted;
- the set of non-zero **codewords**;
- the set of words within  $\lfloor (d_{min} 1)/2 \rfloor$  of any other codeword.

Proof:

$$y = c + e$$

- When  $e \in \mathcal{C}$ , no error is detected.
- When

$$d_H(\mathbf{y}, \mathbf{c}') \le \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor,$$

for some  $\mathbf{c}' \neq \mathbf{c}, \ \mathbf{c}' \in C$ , decoder will output  $\mathbf{c}'$ , committing an undetectable error.

# 3.4 Matrix Description of the LBC 3.4.1 Generator Matrix (G)

Write basis vectors  $(\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_k)$  of  $\mathcal{C}$  as rows of matrix  $\mathbf{G}$   $(k \times n)$ :

- information:  $\mathbf{a} = (a_1, \ldots, a_k);$
- encoded uniquely as:

$$\mathbf{c} = \mathbf{a} \cdot \mathbf{G} = (a_1, \dots, a_k) \cdot \mathbf{G}, \ a_i \in GF(q).$$

#### 3.4.2 Dual Code and Parity Check Matrix

**Definition 4** The dual code  $C^{\perp}$  of C is the orthogonal complement of C.

Let  $(\mathbf{h}_1, \ldots \mathbf{h}_{n-k})$  be a basis for  $\mathcal{C}^{\perp}$ . Then,

$$\mathbf{c} \in \mathcal{C} \Rightarrow \mathbf{c} \mathbf{H}^T = 0,$$

where the rows of H are  $(\mathbf{h}_1, \dots \mathbf{h}_{n-k})$ .

Thus, we have an *error detection* algorithm:

• Transmit c, receive y = c + e.

$$\mathbf{y}\mathbf{H}^T = \mathbf{c}\mathbf{H}^T + \mathbf{e}\mathbf{H}^T$$
$$= 0 + \mathbf{e}\mathbf{H}^T.$$

•  $\mathbf{v}\mathbf{H}^T \neq 0 \Rightarrow \mathbf{e} \neq \mathbf{0}$  and the presence of errors is easily detected.

**Theorem 2** C contains a nonzero word of weight  $w \Leftrightarrow$  a set of w columns of **H** is linearly dependent.

Proof:

- (⇒): If c ∈ C, then cH<sup>T</sup> = 0. Hence, if w<sub>H</sub>[w] = w then a set of w columns of H is linearly dependent.
- (⇐): If w columns of H are linearly dependent, there exists a linear combination of w columns which = 0; *i.e.*, vH<sup>T</sup> = 0 and w<sub>H</sub>[v] must be w.

## 3.4.3 To find the Parity Check Matrix

**Corollary:** The fewest number of columns **H** that are linearly dependent is  $d_{min}$ .

To find a code having a required  $d_{min}$ :

- find a matrix of  $d_{min}$  linearly dependent columns such that no set of  $d_{min} - 1$  columns is linearly dependent;
- $\bullet\,$  use this matrix as the check matrix  ${\bf H}.$

## **3.4.4 Equivalent Codes**

**Definition 5** The following are **elementary row operations** on the generator of a vector subspace:

- interchange any pair of rows;
- multiply a row by a non-zero field element;
- add a multiple of one row to another;
- an inverse of any of these three operations

**Theorem 3** Performing elementary row operations on the generator G of a code produces another matrix G' with the same row space (up to an isomorphism).

**Proof:** Any linear algebra book.

**Definition 6** The **leading term** of a row of a matrix is the first nonzero term.

**Definition 7** A matrix is said to be in **standard form** (row echelon form) if

- every leading term of a nonzero row is 1;
- every column containing a leading term is zero elsewhere;
- the leading term of any row is to the right of the leading term in every preceding row;
- all zero rows (if any) are below all nonzero rows.





**Lemma** Any matrix can be placed in standard form by use of the elementary row operations. Proof: Obvious.

Notes:

- Placing a matrix in standard form can reveal its dimension.
- If  ${\bf G}$  is in standard form and of dimension k
  - the first k positions of the n-tuple  $\mathbf{a} \cdot \mathbf{G}$  are exactly the contents of  $\mathbf{a}$ .

If G is in standard form and of dimension k, we can write:

$$\mathbf{G}_{sf} = [\mathbf{I}_k | \mathbf{P}]$$

**Definition 8** The code generated by  $G_{sf}$  is a systematic code.

## **Column Permutations:**

If we transpose the  $i^{th}$  and  $j^{th}$  symbols in every word of  $\mathcal{C}$ ,

- $d_{min}$  is unchanged;
- (n,k) are unchanged.
- The weight of no codeword is changed.
- The resulting code  $C_{eq}$  is said to be **equivalent** to C.
- G<sub>eq</sub> is obtained by interchanging the *i*<sup>th</sup> and *j*<sup>th</sup> columns of the original G.

**Lemma:** If  $\mathbf{G} = [\mathbf{I}_k | \mathbf{P}]$  then  $\mathbf{H} = [-\mathbf{P}^T | \mathbf{I}_{n-k}]$ .

*Proof:* It is easy to show that  $\mathbf{G}\mathbf{H}^T = 0$ .

**Theorem 4** Every LBC is equivalent to some systematic code.

*Proof:* Proof is by elementary row operations and/or column permutations.

#### 3.4.5 Additional Bounds for LBCs

**Theorem 5 (The Singleton Bound):** For any (n, k) LBC,  $d_{min} \leq 1 + (n - k)$ .

Proof: Write

$$\mathbf{G} = [\mathbf{I}_k | \mathbf{P}]$$

- $I_k$  contributes 1 to  $w_{min}$ .
- **P** contributes at most n k to  $w_{min}$ .

**Definition 9** A maximum distance separable or MDS code is one which meets the Singleton Bound with equality.

Hamming Bound for a LBC:

$$r = n - k$$
  
 $n - k \ge \log_q V_q(n, t)$ 

**Gilbert Bound** for a LBC:

$$n-k \le \log_q V_q(n,2t)$$

## Perfect LBCs

$$n-k = \log_q \sum_{j=0}^t \binom{n}{j} (q-1)^j$$

For binary codes, this becomes

$$2^{n-k} = \sum_{j=0}^{t} \binom{n}{j}$$

## 3.5 The Standard Array and Decoding an LBC

An LBC is a vector subspace. Encoding and decoding will be simplified, compared with the general block code, by use of tools from linear algebra. Therefore, we must introduce elementary group theory before proceeding.

## 3.5.1 Groups and Cosets

**Definition 10** A group G is a set with a binary operation  $\star$  which together satisfy:

- closure:  $a, b \in \mathcal{G} \Rightarrow c = a \star b \in \mathcal{G}$ .
- associativity: In  $\mathcal{G}$ ,  $(a \star b) \star c = a \star (b \star c)$ .
- identity:  $\mathcal{G}$  contains an element i such that  $a = a \star i$ .
- inverses: For every  $a \in \mathcal{G}$ , there exists  $a^{-1} \in \mathcal{G}$  such that  $a \star a^{-1} = i$ .

**Definition 11** : If  $a \cdot b = b \cdot a$ , we say that the group operation is commutative and that  $\mathcal{G}$  is a commutative or Abelian group.

## **Examples of Groups:**

- 1. the integers  ${\mathcal Z}$  under addition;
- 2. the integers under addition modulo p (prime) (Proof: exercise);
- 3. the permutations on n symbols under *composition*; for n = 3 are a *non-Abelian* group.
  - $g_0: [(123) \rightarrow (123)] \leftarrow identity$
  - $g_1: [(123) \to (231)]$
  - $g_2: [(123) \to (312)]$
  - $g_3: [(123) \to (213)]$
  - $g_4: [(123) \to (132)]$
  - $g_5: [(123) \to (321)]$

**Note:** The integers  $\mathcal{Z}$  under multiplication do *not* form a group:

- closure:  $a, b \in \mathbb{Z} \Rightarrow ab = c \in \mathbb{Z}$ .
- associativity: (ab)c = a(bc)
- identity:  $1 \cdot a = a$
- inverses: The inverse of 3 under multiplication does not exist!

## **Example: The integers** $\mathcal{Z}_p$ under addition mod p

| + | 0 | 1 | 2 |
|---|---|---|---|
|   |   |   |   |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 |
| 2 | 0 | 2 | 1 |

## 3.5.1.1 The Subgroup

Let  $\mathcal{G}$  be a group with operation " $\star$ " and  $\mathcal{H} \subset \mathcal{G}$ .

**Definition 12** :  $\mathcal{H}$  is a subgroup of  $\mathcal{G}$  if it is a group under the operation " $\star$ ."

**Lemma:**  $\mathcal{H} \subset \mathcal{G}$  is a subgroup of  $\mathcal{G}$  if

- *H* is *closed* under "\*."
- $\mathcal{H}$  contains the *inverse* of every element of  $\mathcal{H}$ .

Proof: Exercise

#### **Examples of subgroups:**

- $\mathcal{H}_1 = \{ Even \text{ integers} \}$  is a subgroup of  $\mathcal{Z}$  under addition.
- $\mathcal{H}_2 = \{z \in \mathcal{Z} \ s.t. |z| = 3k, \ k = 0, 1, ...\}$  is a subgroup of  $\mathcal{Z}$  under addition.
- Note: There is no multiplication in  $\mathcal{H}_2$ . 3k is "shorthand" for k + k + k.

**Definition 13** :  $h^j \equiv \underbrace{h \star h \star h \cdots h}_{j \text{ times}}$  where  $\cdot$  is the group operation.

**Lemma:** If  $h \in \mathcal{G}$ , a finite group, then  $\mathcal{H}_3 = \{h, h^2, h^3, \ldots\}$  is a subgroup of  $\mathcal{G}$ .

Proof:

 $\mathcal{G} \text{ finite } \Rightarrow \mathcal{H}_3 \text{ finite}$  $\mathcal{H}_3 \text{ finite } \Rightarrow \text{ series } h^j \text{ repeats}$ 

Therefore,  $h^m = h$  for some m.



- standard array or coset decomposition of  $\mathcal{G}$  (w.r.t. H).
- Each row is called a *(left)* coset (of  $\mathcal{G}$  in  $\mathcal{H}$ ).
- In the  $i^{th}$  row, element  $g_i$  is the *coset leader*.
- $g_i$  does not appear in any previous row (by construction).

**Theorem 6** Each  $g_i \in \mathcal{G}$  appears exactly once in the standard array. Proof:

- 1. Each appears at least once by construction.
- 2. If 2 entries in same coset are equal:

$$g_i h_j = g_i h_k$$
  

$$(g_i^{-1})g_i h_j = (g_i^{-1})g_i h_k$$
  

$$h_i = h_j \Rightarrow \text{Contradiction}$$

3. If 2 entries in different cosets are equal:

$$g_i h_j = g_k h_m, \ i < k$$
$$g_i h_j (h_m^{-1}) = g_k$$

But this puts  $g_k$  in the  $i^{th}$  coset which contradicts construction that coset leaders are not previously used.

**Corollary:** The order of  $\mathcal{H}$  divides the order of G. *Proof:*  $\mathbf{ord}(H) =$  the number of columns of standard array. **Definition 14** The order of  $g \in \mathcal{G}$  is the smallest integer m s.t.  $g^m = e$ .

**Corollary:** The order of a group is divisible by the order of any of its elements.

Proof:

- The set  $\{g, g^2, \dots, g^{ord(g)}\}$  is a (cyclic) subgroup. (Exercise: prove it is a subgroup.)
- Form standard array with respect to that cyclic subgroup.

This ends the intro to group theory.

## 3.5.2 Coset Decomposition of the n-tuples

- Consider space of n-tuples over GF(q).
- Code C is a subspace (subgroup).
- Construct the standard array with respect to  $\mathcal{C}$ .
  - First coset: C. Coset leader = 0
  - Next coset leader: Any unused n-tuple of *lowest weight*.
  - Repeat until space of n-tuples is exhausted.

## **Coset Decomposition of the** *n***-tuples**

**Lemma:** Let  $t = \lfloor (d_{min} - 1)/2 \rfloor$  No more than one vector of weight t or less can exist in any coset.

Proof: Exercise.

- Every correctable error pattern is a coset leader.
- To decode:
  - $-\,$  Find the received word in the standard array.
  - Codeword at top of its column is the most likely transmitted.
  - Corrects all guaranteed error patterns, perhaps others.
- Computational work *still* grows rapidly with *n*.

## **3.5.3 Syndrome Decoding**

The standard array motivates a simpler but equivalent decoder.

**Definition 15** For any received vector  $\mathbf{v}$ , the syndrome of  $\mathbf{v}$  is

$$\mathbf{s} = \mathbf{v} \mathbf{H}^T$$

**Theorem 7** All vectors in the same coset have the same syndrome. That syndrome is unique to the coset.

*Proof:* Let  $\mathbf{u}$  and  $\mathbf{v}$  belong to the coset having leader  $\mathbf{x}$ . Then

$$\mathbf{u} = \mathbf{x} + \mathbf{c}_j$$

$$\mathbf{v} = \mathbf{x} + \mathbf{c}_k$$

$$\mathbf{s} = \mathbf{u}\mathbf{H}^T = \mathbf{x}\mathbf{H}^T$$

$$\mathbf{s}' = \mathbf{v}\mathbf{H}^T = \mathbf{x}\mathbf{H}^T$$

## Syndrome Decoding Algorithm:

- compute the syndrome of the received vector;
- find the corresponding coset leader;
- subtract coset leader from received word.
- If there are  $\lfloor \frac{d_{min}-1}{2} \rfloor$  or fewer errors decoding will be correct.

This decoder is equivalent to the standard array decoder but requires less storage.

#### Notes:

- Code *guarantees* to correct only *t* errors per codeword.
- Standard array or syndrome decoding can correct  $2^{n-k}$  error patterns.
- Usually,

$$\sum_{j=0}^{t} \binom{n}{j} < 2^{n-k}$$

• Equality holds only for a perfect code.

## 3.5.4 Examples 3.5.4.1 Hamming Codes – Binary

**Problem:** Design an LBC with  $d_{min} \ge 3$  for some block length  $n = 2^m - 1$ .

- If  $d_{min} = 3$ , then every pair of columns of **H** is independent.
- *i.e.*, for binary code, this requires only that
  - no two columns are equal;
  - all columns are nonzero.

- But there are  $2^m 1$  distinct, nonzero, binary m-tuples.
- Therefore, we can construct m-dimensional H. (why?)
- Therefore, C has dimension  $k = 2^m 1 m$  (why?). LBC.

#### 3.5.5 Perfect Codes

**Definition 16** The packing radius is the radius of the largest sphere that can be drawn around every codeword in n-space such that no two spheres intersect.

The value of this radius is  $\lfloor (d_{min} - 1)/2 \rfloor$ .

**Definition 17** The covering radius of a code is the radius of the smallest sphere that can be drawn about every codeword such that every point in n-space is included.

**Definition 18** A **perfect code** *is one whose packing and covering radii are equal.* 

(Notice the equivalence to the earlier definition.)

**Note:** A perfect code satisfies the *Hamming bound* with equality. (See Problem 1.5.)

## **Recall Examples:**

- the Hamming codes;
- the binary (23, 12) Golay code and the ternary (11, 6) Golay codes.

**Definition 19** A **quasi-perfect code** is one for which the covering radius equals the packing radius plus one.

## 3.5.6 New Codes from Existing Codes

Why?

- 1. as alternative to designing new code, to wit:
  - May already know the properties of some code.
    - The properties of the new code would be easy to infer.
  - Decoder for the modified code often can be used with little or no modification.
- 2. when existing code doesn't quite fit an application:
  - block code words representing data of certain size;
  - to fit a codeword into allocated fields in network protocol.

How?

**Definition 20** Adding a check symbol expands a code.

**Definition 21** Adding an info symbol lengthens a code.

**Definition 22** Dropping a check symbol punctures a code.

**Definition 23** Dropping an info symbol shortens a code.

**Definition 24** Increasing k but not n augments a code.

**Definition 25** Decreasing k but not n expurgates a code.

#### **Example: Expansion**

- Consider a binary (n,k) code with odd minimum distance  $d_{min}$ .
- Add one additional position which checks (even) parity on all *n* positions.
  - The dimension k of the code is unchanged.
  - $d_{min}$  increases by one. (Why?)
  - The code length n increases by one.

The transpose of the parity check matrix of the expanded code has the following form:

As an example of an expanded code, consider an expanded binary  $(2^m, 2^m - m)$  Hamming code with  $d_{min} = 4$ . End of introduction to linear block codes.

## **APPENDIX:** Review of Vector Spaces

**Definition 26** A set V is said to be a vector space over the field F if:

- $\mathcal{V}$  is an Abelian group under vector addition.
- $\mathcal{V}$  is closed under multiplication by scalar; i.e.,

 $c \in F, \mathbf{v} \in \mathcal{V} \Rightarrow c\mathbf{v} \in \mathcal{V}.$ 

## Properties of $\mathcal{V}$ :

- *identity*:  $1_F \mathbf{v} = \mathbf{v}, \ \forall \mathbf{v} \in \mathcal{V}.$
- distributive law: For  $c_1, c_2, c \in F$  and  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v} \in \mathcal{V}$ ,

$$(c_1 + c_2)\mathbf{v} = c_1\mathbf{v} + c_2\mathbf{v}$$
$$c(\mathbf{v}_1 + \mathbf{v}_2) = c\mathbf{v}_1 + c\mathbf{v}_2.$$

• associative law 
$$(c_1c_2)\mathbf{v} = c_1(c_2\mathbf{v})$$
.

## Warnings:

- $0_V$  and  $0_F$  are distinct.
- + in  $\mathcal{V}$  is distinct from + in F.

We distinguish from the context.

## **Examples:**

• n-tuples over a field:

$$\mathbf{v} = (v_1, v_2, \dots, v_n), v_i \in F.$$

•  $L_2$  real-valued functions:

$$\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty.$$

• Polynomials in x, coefficients in GF(q), vector addition is the addition of polynomials:

$$\mathbf{v} = (a_0 + a_1 x + a_2 x^2 + \cdots), \ a_i \in GF(q)$$
  
$$c\mathbf{v} = (ca_0 + ca_1 x + ca_2 x^2 + \cdots), \ ca_i \in GF(q).$$

**Exercise:** Verify each.

#### **Definitions (Linear Algebra):**

- $u = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3$  is a linear combination of  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ ,  $\mathbf{v}_3$ .
- $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  are said to be *linearly dependent* if there exist  $\{a_i\}_{i=1}^n$ , not all zero, such that

$$\sum_{i=1}^{n} a_i \mathbf{v}_i = 0.$$

- A set of vectors that is not linearly independent is said to be *linearly dependent*.
- A set {v<sub>1</sub>,..., v<sub>N</sub>} is said to span 𝒱 if every v ∈ 𝒱 is equal to a linear combination of the set.

## More Definitions (More Linear Algebra):

- A linearly independent set of vectors spanning V is said to be a *basis* of V.
- The dimension N of  ${\mathcal V}$  is the number of vectors in its basis.
- When N is finite,  $\mathcal{V}$  is a *finite-dimensional* vector space.
- Otherwise,  ${\cal V}$  is said to be  $\infty-dimensional.$

**Theorem 8** Any linearly independent set of N vectors from  $\mathcal{V}$  forms a basis for  $\mathcal{V}$ .

## **Definition 27** A vector subspace is any $W \subset V$ which itself is a vector space under the (inherited) operations of V.

**Lemma:** To determine if a subset is a subspace, one need test only for closure under each operation.

*Proof:* Exercise.

**Theorem 9** Let  $\mathcal{V}$  be a vector space and  $\mathcal{W} \subset \mathcal{V}$  such that

$$\mathcal{W} = \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \rangle, \mathbf{v}_i \in \mathcal{V}, \ i = 1, \dots, k.$$

Then  $\mathcal{W}$  is a subspace of  $\mathcal{V}$ .

Proof:

- $0 \in \mathcal{W}$  by scalar multiplication.
- $\mathbf{u}, \mathbf{w} \in \mathcal{W}$  are linear combinations of  $\{\mathbf{v}_i, i = 1, \dots k\}$ .
  - Therefore so is  $\mathbf{u} + \mathbf{w}$ , hence belongs to  $\mathcal{W}$ . If  $c \in F$ , then  $c\mathbf{u} \in \mathcal{W}$ .
- Similarly,  $c \in F \Rightarrow c(\mathbf{u} + \mathbf{v}) \in \mathcal{W}$

Therefore  $\mathcal{W}$  is a vector subspace.

**Corollary** If  $\mathcal{W}$  is a vector subspace of  $\mathcal{V}$  s.t.  $dim(\mathcal{W}) = dim(\mathcal{V})$ , then  $\mathcal{W} = \mathcal{V}$ .

**Example:** The *n*-tuples over *F*. Let  $a_i \in F$ , i = 1, ..., n

$$(a_1, a_2, \ldots, a_n) \in F^n$$

**Note:** Any n-dimensional vector space is isomorphic to  $F^n$ .

Proof: Consider coefficients in the linear combination.

**Definition 28** The scalar or inner product of  $\mathbf{a} = (a_1, \ldots, a_n)$  and  $\mathbf{b} = (b_1, \ldots, b_n)$  in  $F^n$  is

$$\mathbf{a} \cdot b = \sum_{i=1}^{n} a_i b_i.$$

#### **Some Properties:**

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$

• 
$$w \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{w} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{v}$$

## Orthogonality

- If  $\mathbf{u} \cdot \mathbf{v} = 0$ , we say that  $\mathbf{u}$  is **orthogonal** to  $\mathbf{v}$ .
- Over finite fields, it is possible that  $\mathbf{u} \cdot \mathbf{u} = 0$  (self-orthogonality).
- If W = {w<sub>i</sub>, i = 1,..., M}, W ⊂ V and if u is orthogonal to every w<sub>i</sub>, i = 1,..., M, then we say u is orthogonal to W. (This notion requires V and W to be sets only.)
- If every member of U ⊂ V is orthogonal to W ⊂ V, then we say that U is the orthogonal complement of W.

**Theorem 10** Let  $\mathcal{W}$  be a vector subspace of  $\mathcal{V}$ . The orthogonal complement  $\mathcal{U}$  of  $\mathcal{W}$  is a vector subspace.

Proof:

- $0 \in \mathcal{W}$
- Then, for all  $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$  and all  $\mathbf{w} \in \mathcal{W}$ ,

 $\mathbf{w} \cdot \mathbf{u}_1 = 0$  $\mathbf{w} \cdot \mathbf{u}_2 = 0$ 

Therefore,

$$\mathbf{w} \cdot (\mathbf{u}_1 + \mathbf{u}_2) = 0$$

and  $(\mathbf{u}_1 + \mathbf{u}_2)$  is a member of the orthogonal complement. This can be shown to hold for  $c\mathbf{u}$  as well.

#### Notes:

- If a vector **u** is orthogonal to every element of the basis of  $\mathcal{W}$ , then **u** is an element of the orthogonal complement of  $\mathcal{W}$ .
- The orthogonal complement of the orthogonal complement of  ${\cal W}$  is  ${\cal W}$  itself.