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2.0 Block Codes

2.1 Definitions and Examples

Definition 1 A block code C is a set of M n−tuples drawn from

some specified alphabet.a

¤
• Each codeword represents log2 M bits of information.

Definition 2 The rate R of code C over an alphabet of size q is

R =
log2 M

n
.

¤
• R is expressed in bits/symbol.

aThe alphabet will be defined more precisely later.
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2.2 Characterization of Errors

Abstract channel model:

• Codeword c = (c0, c1, . . . , cn−1) is transmitted over a noisy

channel.

• y = (y0, y1, . . . , yn−1) is received.

y = c + e

• “+” is defined in the symbol alphabet.

• e = (e0, . . . , en−1) is the error pattern or error vector.

• Error detection: did any errors occur?

• Error correction: where are the errors; what are their values?
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2.3 Weights and Distances

• We need a measure of distance or difference between codewords.

• Properties of distance measures.

– d(x,y) ≥ 0.

– d(x,y) = 0 ⇔ x = y.

– d(x, z) + d(z,y) ≥ d(x,y) (triangle inequality).

– d(x,y) = d(y,x).
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Definition 3 The Hamming distance between two vectors of the

same length is the number of positions in which they differ. ¤

We will also need the following.

Definition 4 The Hamming weight wH(v) of an n−tuple is the

number of nonzero components in the vector. ¤
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2.4 Decoding

2.4.1 Distance Measures and Error Correction

Definition 5 The minimum distance of a code is

dmin = min
ci 6=cj∈C

dH(ci, cj)

¤
Let us return to our example:

y = c + e

and let

wH(e) = t′

i.e., t′ errors have occurred in the transmission of c.
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Definition 6 The process of estimating c (equivalent to finding e)

from y is called decoding.

¤
Suppose decoder uses a minimum distance decoding rule:

ĉ = arg min
c∈C

dH(y, c).

Then, t < dmin/2 ⇒ ĉ is the transmitted word.

Note: “Decoding” includes the process of error correction.
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Formally...

Theorem 1 A code with minimum distance dmin = 2t + 1 can, with

suitable decoding, correct any error pattern e if

wH(e) ≤ t

where

t =
⌊

dmin − 1
2

⌋
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Proof:

• Construct sphere of “radius” (dmin − 1)/2 about every codeword.

• These nonoverlapping spheres are decoding regions of C.
– Suppose y ∈ a sphere about word ci.

∗ Then dH(y, ci) ≤ t.

∗ But dh(ci, cj) > 2t for every j 6= i such that ci ∈ C.
– So, y is nearer to ci than to any other codeword. (see below).

ci < −−−− > y < −−−−−−−−−− > cj

≤ t ≥ t + 1

• Hence, every other codeword is farther from y than ci

¤
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How do we use distance measures? (See also Appendix 2-A.)

Definition 7 A channel with input symbols from an M -ary alphabet

and output symbols from a Q-ary alphabet, where M and Q are finite

integers is said to be a discrete channel. ¤
Definition 8 A discrete channel whose output during a symbol

interval is determined only by the input symbol during that interval

(and on no previous symbol) is called a discrete memoryless channel

(DMC). ¤
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The binary symmetric channel (BSC) is a special case of the DMC.

• On the BSC with error prob. p < 1/2,

(1− p)n > p · (1− p)n−1 > p2 · (1− p)n−2 > · · · > pn

so

• receiving the block with no errors is more likely than receiving of

any other block;

• receiving a block with one error is more likely than receiving a

block with two (or more) errors;

• etc.

Thus, the best strategy is to decode into the codeword that is closest

to the received word.
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Exercise:

For a block length of n = 7, for what values of p does the probability

of receiving an n-tuple correctly exceed the probability of receiving the

n-tuple with a single error?

(Hint: the probability of j errors in an n-tuple is given by the

binomial probability distribution.
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2.4.2 Decoder Performance Measures

Definition 9 The event that the decoder chooses other than the

transmitted codeword is called a decoding error. ¤
Definition 10 The event that the decoder is unable to choose any

codeword is called a decoding failure. ¤
Definition 11 A decoder which finds the codeword nearest the

received vector is called a complete (or nearest neighbor) decoder.

¤
ĉi = arg min

c∈C
d(y, c)
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Definition 12 A decoder which decodes correctly only when t′ ≤ t

called a bounded distance decoder (BDD). ¤
i.e.,

ĉi = arg min
c

d(y, c)

only if d(y, c) ≤ t where dmin ≥ 2t + 1.

For a BDD,

• if dH(y, cj) ≤ t where cj is not the transmitted codeword, the

decoder outputs an incorrect word and suffers a decoding error.

• if dH(y, c) > t, ∀c ∈ C, the BDD can make no selection and

suffers a decoding failure.
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2.4.3 Optimal Decoders

One must define the criterion for optimality before identifying the

characteristics of an “optimal” decoder.

Let Pr(yi|ci) be the (conditional) probability that the DMC output

symbol is yi, given that the input symbol is ci.

Lemma: The conditional probability distribution of the channel

output word is given by

P (y|c) =
n−1∏

i=0

Pr(yi|ci)

¤
Proof: Exercise.
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Definition 13 The maximum likelihood decoder produces

codeword ĉ given by

ĉ = arg max
c∈C

P (y|c).

¤
Now we apply Bayes’s rule to compute

P (c|y) =
P (y|c)p(c)

p(y)

where p(c) is the prior probability of codeword c and p(y) is the

unconditional probability of channel output y. This gives us
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Definition 14 The maximum a posteriori (MAP) decoder is given

by

ĉ = arg max
c∈C

P (c|y)

¤
Lemma: The MAP and ML decoders are identical for the DMC when

codewords are equiprobable. ¤
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2.5 Some Useful Bounds on Block Codes

2.5.1 The Hamming Bound

• Consider n−tuples as points in n− space.

– This is a discrete space.

– Distance measure is dH .

• Place codeword c1 at center of “sphere” of radius t = b(d− 1)/2c.

• If y (channeloutput) ∈ the sphere, then y is decoded as c1 and

1. fewer than t errors occurred, decoding is correct, or

2. more than t errors occurred, and the decoder output is

incorrect.
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• dmin constraint: max number of spheres in n-space separated by

at least dmin is the max number M of codewords.

• volume (number of points) of sphere is found by summing:

1 @ center

n(q − 1) @ d = 1 from center(
n

2

)
(q − 1)2 @ d = 2 from center

...(
n

t

)
(q − 1)t @ d = t from center.

We sum these to get the total volume occupied by code words.
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Vq(n, t) =
t∑

j=0

(
n

j

)
(q − 1)j

• Number of points in the space = qn.

• If there are M spheres (codewords),

M · Vq(n, t) ≤ qn

logq M + logq Vq(n, t) ≤ n

n− logq M ≥ logq Vq(n, t)

• Let r = n− logq M = the block code redundancy (Why?). Then

r ≥ logq Vq(n, t)

• This is the Hamming lower bound on r for any block code.
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2.5.2 The Gilbert Bound

A random code design method:

1. Randomly select the first codeword c1.

2. Delete all x s.t. d(c1,x) ≤ 2t (as many as Vq(n, 2t) points.)

3. Select a remaining point and repeat.

4. Stop when points are exhausted.

By this procedure, M codewords have been chosen, where

M =
⌈

qn

Vq(n, 2t)

⌉

≥ qn

Vq(n, 2t)
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Taking logs and rearranging gives

r ≤ logq Vq(n, 2t)

This is the Gilbert Bound. Note that, for spheres of radius 2t, the

Hamming bound gives a lower bound of logq Vq(n, 2t) ≤ r. However,

this lower bound is subsumed by that for smaller radius:

logq Vq(n, t) ≤ r ≤ logq Vq(n, 2t),

where

• the first inequality is a bound;

• the second inequality shows existence.
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2.5.3 Perfect Codes

Definition 15 A perfect code is one that satisfies the Hamming

bound with equality. ¤

r = logq

t∑

j=0

(
n

j

)

Thus, every point in the space is within distance (dmin − 1)/2 of a

code word and within a sphere.

Definition 16 In a quasi-perfect code, all points not in a sphere

about a codeword lie at distance t + 1 from at least one codeword. ¤
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2.5.4 Varsharmov-Gilbert Bound

Theorem 2 For each R, d(R) ≥ δ for all δ that satisfy

R ≥ 1−Hq(δ)

where Hq is the entropy function,

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x)

and

d(R) = lim
n→∞

1
n

d(n,R)

d(n,R) = max
C

dmin(C)


