### 2.0 Block Codes

### 2.1 Definitions and Examples

Definition $1 A$ block code $\mathcal{C}$ is a set of $M n$-tuples drawn from some specified alphabet. ${ }^{\text {a }}$

- Each codeword represents $\log _{2} M$ bits of information.

Definition 2 The rate $R$ of code $\mathcal{C}$ over an alphabet of size $q$ is

$$
R=\frac{\log _{2} M}{n}
$$

- $R$ is expressed in bits/symbol.
${ }^{\text {a }}$ The alphabet will be defined more precisely later.


### 2.2 Characterization of Errors

Abstract channel model:

- Codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is transmitted over a noisy channel.
- $\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is received.

$$
\mathbf{y}=\mathbf{c}+\mathbf{e}
$$

- " + " is defined in the symbol alphabet.
- $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right)$ is the error pattern or error vector.
- Error detection: did any errors occur?
- Error correction: where are the errors; what are their values?


### 2.3 Weights and Distances

- We need a measure of distance or difference between codewords.
- Properties of distance measures.
$-d(\mathbf{x}, \mathbf{y}) \geq 0$.
$-d(\mathbf{x}, \mathbf{y})=0 \Leftrightarrow \mathbf{x}=\mathbf{y}$.
$-d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y}) \geq d(\mathbf{x}, \mathbf{y})$ (triangle inequality).
$-d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$.

Definition 3 The Hamming distance between two vectors of the same length is the number of positions in which they differ.

We will also need the following.

Definition 4 The Hamming weight $w_{H}(\mathbf{v})$ of an $n$-tuple is the number of nonzero components in the vector.

### 2.4 Decoding

### 2.4.1 Distance Measures and Error Correction

Definition 5 The minimum distance of a code is

$$
d_{\min }=\min _{c_{i} \neq c_{j} \in \mathcal{C}} d_{H}\left(c_{i}, c_{j}\right)
$$

Let us return to our example:

$$
\mathbf{y}=\mathbf{c}+\mathbf{e}
$$

and let

$$
w_{H}(\mathbf{e})=t^{\prime}
$$

i.e., $t^{\prime}$ errors have occurred in the transmission of $\mathbf{c}$.

Definition 6 The process of estimating $\mathbf{c}$ (equivalent to finding e) from $\mathbf{y}$ is called decoding.

Suppose decoder uses a minimum distance decoding rule:

$$
\hat{\mathbf{c}}=\arg \min _{\mathbf{c} \in \mathcal{C}} d_{H}(\mathbf{y}, \mathbf{c}) .
$$

Then, $t<d_{\min } / 2 \Rightarrow \hat{\mathbf{c}}$ is the transmitted word.

Note: "Decoding" includes the process of error correction.

Formally...

Theorem 1 A code with minimum distance $d_{\text {min }}=2 t+1$ can, with suitable decoding, correct any error pattern e if

$$
w_{H}(\mathbf{e}) \leq t
$$

where

$$
t=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor
$$

## Proof:

- Construct sphere of "radius" $\left(d_{\min }-1\right) / 2$ about every codeword.
- These nonoverlapping spheres are decoding regions of $\mathcal{C}$.
- Suppose $\mathbf{y} \in$ a sphere about word $\mathbf{c}_{i}$.
* Then $d_{H}\left(\mathbf{y}, \mathbf{c}_{i}\right) \leq t$.
* But $d_{h}\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)>2 t$ for every $j \neq i$ such that $c_{i} \in \mathcal{C}$.
- So, $\mathbf{y}$ is nearer to $\mathbf{c}_{i}$ than to any other codeword. (see below).


$$
\leq t \quad \geq t+1
$$

- Hence, every other codeword is farther from $\mathbf{y}$ than $\mathbf{c}_{i}$

How do we use distance measures? (See also Appendix 2-A.)
Definition 7 A channel with input symbols from an $M$-ary alphabet and output symbols from a $Q$-ary alphabet, where $M$ and $Q$ are finite integers is said to be a discrete channel.

Definition 8 A discrete channel whose output during a symbol interval is determined only by the input symbol during that interval (and on no previous symbol) is called a discrete memoryless channel (DMC).

The binary symmetric channel (BSC) is a special case of the DMC.

- On the BSC with error prob. $p<1 / 2$,

$$
(1-p)^{n}>p \cdot(1-p)^{n-1}>p^{2} \cdot(1-p)^{n-2}>\cdots>p^{n}
$$

so

- receiving the block with no errors is more likely than receiving of any other block;
- receiving a block with one error is more likely than receiving a block with two (or more) errors;
- etc.

Thus, the best strategy is to decode into the codeword that is closest to the received word.

## Exercise:

For a block length of $n=7$, for what values of $p$ does the probability of receiving an $n$-tuple correctly exceed the probability of receiving the $n$-tuple with a single error?
(Hint: the probability of $j$ errors in an $n$-tuple is given by the binomial probability distribution.

### 2.4.2 Decoder Performance Measures

Definition 9 The event that the decoder chooses other than the transmitted codeword is called a decoding error.

Definition 10 The event that the decoder is unable to choose any codeword is called a decoding failure.

Definition 11 A decoder which finds the codeword nearest the received vector is called a complete (or nearest neighbor) decoder.

$$
\hat{\mathbf{c}}_{i}=\arg \min _{\mathbf{c} \in \mathcal{C}} d(\mathbf{y}, \mathbf{c})
$$

Definition 12 A decoder which decodes correctly only when $t^{\prime} \leq t$ called a bounded distance decoder ( $B D D$ ).
i.e.,

$$
\hat{\mathbf{c}}_{i}=\arg \min _{\mathbf{c}} d(\mathbf{y}, \mathbf{c})
$$

only if $d(\mathbf{y}, \mathbf{c}) \leq t$ where $d_{\text {min }} \geq 2 t+1$.

For a BDD,

- if $d_{H}\left(\mathbf{y}, \mathbf{c}_{j}\right) \leq t$ where $\mathbf{c}_{j}$ is not the transmitted codeword, the decoder outputs an incorrect word and suffers a decoding error.
- if $d_{H}(\mathbf{y}, \mathbf{c})>t, \forall \mathbf{c} \in \mathcal{C}$, the BDD can make no selection and suffers a decoding failure.


### 2.4.3 Optimal Decoders

One must define the criterion for optimality before identifying the characteristics of an "optimal" decoder.

Let $\operatorname{Pr}\left(y_{i} \mid c_{i}\right)$ be the (conditional) probability that the DMC output symbol is $y_{i}$, given that the input symbol is $c_{i}$.

Lemma: The conditional probability distribution of the channel output word is given by

$$
P(\mathbf{y} \mid \mathbf{c})=\prod_{i=0}^{n-1} \operatorname{Pr}\left(y_{i} \mid c_{i}\right)
$$

Proof: Exercise.

## Definition 13 The maximum likelihood decoder produces

 codeword $\hat{\mathbf{c}}$ given by$$
\hat{\mathbf{c}}=\arg \max _{\mathbf{c} \in \mathcal{C}} P(\mathbf{y} \mid \mathbf{c}) .
$$

Now we apply Bayes's rule to compute

$$
P(\mathbf{c} \mid \mathbf{y})=\frac{P(\mathbf{y} \mid \mathbf{c}) p(\mathbf{c})}{p(\mathbf{y})}
$$

where $p(\mathbf{c})$ is the prior probability of codeword $\mathbf{c}$ and $p(\mathbf{y})$ is the unconditional probability of channel output $\mathbf{y}$. This gives us

Definition 14 The maximum a posteriori (MAP) decoder is given by

$$
\hat{\mathbf{c}}=\arg \max _{\mathbf{c} \in \mathcal{C}} P(\mathbf{c} \mid \mathbf{y})
$$

Lemma: The MAP and ML decoders are identical for the DMC when codewords are equiprobable.

### 2.5 Some Useful Bounds on Block Codes

### 2.5.1 The Hamming Bound

- Consider $n$-tuples as points in $n$-space.
- This is a discrete space.
- Distance measure is $d_{H}$.
- Place codeword $\mathbf{c}_{1}$ at center of "sphere" of radius $t=\lfloor(d-1) / 2\rfloor$.
- If $\mathbf{y}$ (channeloutput) $\in$ the sphere, then $\mathbf{y}$ is decoded as $\mathbf{c}_{1}$ and

1. fewer than $t$ errors occurred, decoding is correct, or
2. more than $t$ errors occurred, and the decoder output is incorrect.

- $d_{\text {min }}$ constraint: max number of spheres in $n$-space separated by at least $d_{\text {min }}$ is the max number $M$ of codewords.
- volume (number of points) of sphere is found by summing:

$$
\begin{array}{rl}
1 & @ \text { center } \\
n(q-1) & @ d=1 \text { from center } \\
\binom{n}{2}(q-1)^{2} & @ d=2 \text { from center } \\
\vdots & \\
\binom{n}{t}(q-1)^{t} & @ d=t \text { from center. }
\end{array}
$$

We sum these to get the total volume occupied by code words.

$$
V_{q}(n, t)=\sum_{j=0}^{t}\binom{n}{j}(q-1)^{j}
$$

- Number of points in the space $=q^{n}$.
- If there are $M$ spheres (codewords),

$$
\begin{array}{r}
M \cdot V_{q}(n, t) \leq q^{n} \\
\log _{q} M+\log _{q} V_{q}(n, t) \leq n \\
n-\log _{q} M \geq \log _{q} V_{q}(n, t)
\end{array}
$$

- Let $r=n-\log _{q} M=$ the block code redundancy (Why?). Then

$$
r \geq \log _{q} V_{q}(n, t)
$$

- This is the Hamming lower bound on $r$ for any block code.


### 2.5.2 The Gilbert Bound

A random code design method:

1. Randomly select the first codeword $\mathbf{c}_{1}$.
2. Delete all $\mathbf{x}$ s.t. $d\left(\mathbf{c}_{1}, \mathbf{x}\right) \leq 2 t$ (as many as $V_{q}(n, 2 t)$ points.)
3. Select a remaining point and repeat.
4. Stop when points are exhausted.

By this procedure, $M$ codewords have been chosen, where

$$
\begin{aligned}
M & =\left\lceil\frac{q^{n}}{V_{q}(n, 2 t)}\right\rceil \\
& \geq \frac{q^{n}}{V_{q}(n, 2 t)}
\end{aligned}
$$

Taking logs and rearranging gives

$$
r \leq \log _{q} V_{q}(n, 2 t)
$$

This is the Gilbert Bound. Note that, for spheres of radius $2 t$, the Hamming bound gives a lower bound of $\log _{q} V_{q}(n, 2 t) \leq r$. However, this lower bound is subsumed by that for smaller radius:

$$
\log _{q} V_{q}(n, t) \leq r \leq \log _{q} V_{q}(n, 2 t)
$$

where

- the first inequality is a bound;
- the second inequality shows existence.


### 2.5.3 Perfect Codes

Definition 15 A perfect code is one that satisfies the Hamming bound with equality.

$$
r=\log _{q} \sum_{j=0}^{t}\binom{n}{j}
$$

Thus, every point in the space is within distance $\left(d_{\min }-1\right) / 2$ of a code word and within a sphere.

Definition 16 In a quasi-perfect code, all points not in a sphere about a codeword lie at distance $t+1$ from at least one codeword. $\square$

### 2.5.4 Varsharmov-Gilbert Bound

Theorem 2 For each $R, d(R) \geq \delta$ for all $\delta$ that satisfy

$$
R \geq 1-H_{q}(\delta)
$$

where $H_{q}$ is the entropy function,

$$
H_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x)
$$

and

$$
\begin{aligned}
d(R) & =\lim _{n \rightarrow \infty} \frac{1}{n} d(n, R) \\
d(n, R) & =\max _{\mathcal{C}} d_{\min }(\mathcal{C})
\end{aligned}
$$

