MOS Transistors Models

Andreas G. Andreou
Pedro Julian

Electrical and Computer Engineering
Johns Hopkins University

http://andreoulab.net
The MOS transistor – Levels of Abstraction -

Model Equations

If $V_{GS} < 0$

$I_{DS} = 0$

If $V_{DS} > V_{GS} - V_{TO}$

$I_{DS} = \left(\frac{W}{L} \right) \frac{UO}{2} \frac{e_0 e_r}{TOX} (V_{GS} - V_T)^2$

If $V_{DS} < V_{GS} - V_{TO}$

$I_{DS} = \left(\frac{W}{L} \right) UO \frac{e_0 e_r}{TOX} \left((V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right)$

$V_T = V_{TO} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$

MATHEMATICAL

PHYSICAL

Model Current-Voltage Characteristics

55nm SST Flash Cell

Current – Voltage Characteristics

SEM photograph

Layout

Symbol

NMOS PMOS
What is a model?

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.
What is a MODEL?

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.
MOS fluidic analogy: a conceptual model (I)

From Mead and Conway

MOS Capacitor

MOS Transistor Varia Bias

MOS Transistor
NMOS as a switch/resistor: a conceptual model (II)

[Diagram showing the NMOS switch in both off and on states, with explanations of electron movement and voltage levels.]
PMOS as a switch/resistor: a conceptual model (III)
What are the physical values for 0 and 1 chip/logic voltages (blue line)
MOS switch model relation to I-V characteristics (I)

With digital input on gate the device is either ON or OFF

180nm technology
MOS switch model relation to I-V characteristics (II)

With digital input on gate the device is either ON or OFF

Approximate ON with the blue line

\[R_{ON} \approx \frac{3.3 \text{ V}}{0.55 \text{ mA}} = 6K \]
What is a MODEL?

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.
Conduction – ohmic- vs saturation

Device operation characterized by the form of the current as a function of the bias voltage between the DRAIN and the source terminals (Vds)

Conduction (also known as Ohmic)

Saturation
Above threshold vs sub-threshold behaviour

Device operation characterized by the form of the current as a function of the bias voltage between the gate and the source terminals (Vgs)
MOS transistor mathematical model
Mathematical model –above threshold-

If \(V_{GS} < 0 \)
\(I_{DS} = 0 \)

If \(V_{DS} > V_{GS} - V_{TO} \)
\(I_{DS} = \left(\frac{W}{L} \right) \left(\frac{UO}{2} \right) \frac{\varepsilon_0 \varepsilon_r}{TOX} \left(V_{GS} - V_T \right)^2 \)

If \(V_{DS} < V_{GS} - V_{TO} \)
\(I_{DS} = \left(\frac{W}{L} \right) UO \frac{\varepsilon_0 \varepsilon_r}{TOX} \left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \)

\(V_T = V_{TO} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right) \)

\(\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} \) is the absolute permittivity
\(\varepsilon_r = \) relative permittivity, equal to 3.9 in the case of SiO2 (no unit)

<table>
<thead>
<tr>
<th>MOS Model 1 parameters</th>
<th>Typical Value 0.12(\mu)m</th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{TO})</td>
<td>Theshold voltage</td>
<td>0.4V</td>
<td>-0.4V</td>
</tr>
<tr>
<td>(U0)</td>
<td>Carrier mobility</td>
<td>0.06m(^2)/V-s</td>
<td>0.02m(^2)/V-s</td>
</tr>
<tr>
<td>TOX</td>
<td>Gate oxide thickness</td>
<td>2nm</td>
<td>2nm</td>
</tr>
<tr>
<td>PHI</td>
<td>Surface potential at strong inversion</td>
<td>0.3V</td>
<td>0.3V</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Bulk threshold parameter</td>
<td>0.4 V(^{0.5})</td>
<td>0.4 V(^{0.5})</td>
</tr>
<tr>
<td>W</td>
<td>MOS channel width</td>
<td>1(\mu)m</td>
<td>1(\mu)m</td>
</tr>
<tr>
<td>L</td>
<td>MOS channel length</td>
<td>0.12(\mu)m</td>
<td>0.12(\mu)m</td>
</tr>
</tbody>
</table>

Model parameters
Above threshold vs sub-threshold behaviour

Device operation characterized by the form of the current as a function of the bias voltage between the gate and the source terminals (Vgs)
Mathematical model – subthreshold –

\[I_D \equiv I_{DS} = S I_n 0 \exp\left(\frac{\kappa n V_{GB}}{V_t}\right) \left[\exp\left(\frac{-V_{SB}}{V_t}\right) - \exp\left(\frac{-V_{DB}}{V_t}\right) \right] \]

\[I_D \equiv I_{SD} = S I_p 0 \exp\left(\frac{-\kappa p V_{GB}}{V_t}\right) \left[\exp\left(\frac{V_{SB}}{V_t}\right) - \exp\left(\frac{V_{DB}}{V_t}\right) \right] \]

\[V_t \equiv \frac{kT}{q} \quad \kappa \equiv \frac{1}{\eta} = \frac{C_{ox}}{C_{ox} + C_{dep}} \quad S \equiv \frac{W}{L} \]

Parameters:

\[I_{p0} = 0.5 \times 10^{-18} \text{ A} \]

\[I_{n0} = 0.9 \times 10^{-18} \text{ A} \]

\[\kappa = 0.7 \]

\[V_t = 0.26 \text{ Volts} \]
Operating current for an NMOS

- Operates on one of two curves
 - on
 - Looks like a current source initially (high V_{ds})
 - Looks like a resistor later (low V_{ds})
 - off
 - Open circuit always
Operating current for a PMOS

- Same behavior as NMOS
 - Open circuit when off
 - Current source or resistor when on
Computer Aided Design Tools

MICROWIND Tool Design Flow

Contact:
Sales: sales@microwind.net
Support: support@microwind.net

SPICE Simulator (3rd Party)

Schematic Modeling
Analog & digital Library models

Digital Simulation
Verilog Extraction
SPICE Extraction

DSCH 3

Verilog File

ModelSim / other

Synthesis
Functional Simulation
Floorplanning
Place & Route
Programming File .bit or .jed

FPGA Tools

Verilog Compiler

Constraints

Technology rule files

Analysis
DRC, ERC
Delay Analyzer
Crosstalk Analyzer
2D Cross section
3D Analyzer

Place & Route

Layout Extraction

ProTHUMB
Advance post layout simulator

Layout Conversion

SPICE, CIF

Layout Editor

Verilog Compiler

Verilog File

nanolambda

Constraints

Technology rule files

Analysis
DRC, ERC
Delay Analyzer
Crosstalk Analyzer
2D Cross section
3D Analyzer

Place & Route

Layout Extraction

Layout Conversion

SPICE, CIF

Synthesis
Floorplanning
Place & Route
Programming File .bit or .jed

FPGA Tools

IO Cards
Traffic Light Controller, Key Pad, Display (LCD, 7 segs)

FPGA / CPLD Boards

MICROWIND Tool

3rd Party Tools

LTSpice
WindSpice

http://www.microwind.net