
Clip 4 parallel processing system

T J . Fountain, B.Sc, M. Phil., and V. Goetcherian, B.Sc, Ph.D.

Indexing terms: Pattern recognition, Picture processing

Abstract: A machine, Clip 4," is described, which is based on the ideas of parallel image processing developed
at University College London. The major sections of the machine are outlined, including the processor array,
which comprises 1152 custom-designed integrated circuits. A programming language has been developed and
the application of the hardware/software system to a number of image-processing problems is shown. The
processing speed of the system is indicated, and is typically several orders of magnitude better than moderately
sized mainframe serial computers.

1 Overview

The Clip (cellular logic image processor) systems are based
on the concept of parallel processing. The development of
the series of Clip machines has been reported by Duff et al.l

Under such a system, data, usually derived from a television
camera picture, is presented to a two-dimensional array
of interconnected processing elements, so that each pro-
cessor is assigned to act upon the data from one point of
the picture, and is permitted access to data from neigh-
bouring points. Thus, any operation to be performed on
the data occurs simultaneously at every point of the picture.
This 'parallel' operation is the basis of the system's con-
siderable speed advantage (typically 1000 times faster)
over conventional'serial'processing techniques. Fig. 1 shows
the Clip 4 system.

2 Hardware

Fig. 2 is a block diagram of the Clip 4 system. The major
sections are as follows:

(a) The array of 9 216 processors. All the parallel data
operations, on which the system depends, take place here.

Fig. 1 Clip 4

Paper 917E, first received 25th March and in revised form
14th July 1980
Mr. Fountain is with the Department of Physics & Astronomy,
University College London, Gower Street, London WClE 6BT,
and Mr. Goetcherian is with Logica Ltd., 68 Newman Street,
London W1A 4SE, England

IEEPROC, Vol. 127, Pt. E, No. 5, SEPTEMBER 1980

(b) The input/output structure, designed to interface
data from the outside world to the array in an efficient
manner.

(c) The control system, consisting of a local controller
for program running and a minicomputer for program
development.

(d) A data capture and display system consisting of
t.v. camera and monitor console.

The central array consists of 96 x 96 basic processors,
-each connected to its eight neighbours. The sections of each
processor (Fig. 3) operate as follows:

(i) Data input to and output from the array are achieved
via storage bits A, which are connected from processor to
processor to form shift registers.

(ii) Local storage of data during processing occurs in
D, a 32-bit r.a.m. This local storage of data during processing
is essential for the high operating speed of the array.

amplifier

c.d.
converter

encoder

9216
—•i

—{

—H . .

- H

bit shift register

I —

i —
selector

PDP11
program
development
facility

array
buffer
memory

monitor

9216 bit shift register

output
destination
select

Fig. 2 Clip 4 system block diagram

enable B

1 3 5 7 C

data
l pPu t data

! output

t

interconnection
inputs

input
gating

A]

Bl'L>, N interconnection
+ j > , - output
i f ' M*

(carry)

Fig. 3 Clip 4 processor circuit

a,;
D load clock

219

0143-7062/80/050219 + 06 $01-50/0

(iii) Inputs from neighbouring processors are gated to
produce a composite function T.

(iv) Two inputs to the central processor logic are derived
as follows:
'A' is always data drawn either from the D registers or from
an external source via the 'A' shift registers. The 'P' input
is derived from the D register, from the composite inter-
connection input T, or from arithmetic operations in the
array (described below).

(v) The processor produces any Boolean combination
of A and P on two output channels, D and N. The D
channel is stored in the D register. The N function, which
need not be the same as the D output, is passed as an
output to neighbouring processors.

(vi) By means of an additional control line and the
storage bit C, the array can perform arithmetic operations
in two modes.
Connectivity between processors in the array is determined
by the required picture tessellation. The Clip 4 machine
allows either square or hexagonal tessellation, under soft-
ware control (Fig. 4).

In either array mode, each cell has a gated connection
to each adjoining cell, the gating on these lines providing
for the implementation of directional algorithms within
the array.

Inputs to the array are derived from the central area
of a t.v. scan. Since the Clip 4 processors are made up of
binary circuit elements, the analogue signals derived from
the t.v. camera undergo a process of 'grey scale encoding'.
Each input data point is stored as a six-bit binary word in
the input store.

Since data is input to the Clip 4 array via a single memory
bit per cell, a number of different modes are provided for
selecting partial data sets from the full set of grey scale
information available in the input stores. These are:

{a) Threshold cut: A six-bit binary number is set in the
appropriate control instruction. Any data point where the
stored six-bit binary value is greater than the number in
the instruction is passed to the array as a T .

(b) Inverse threshold cut: Here any point whose value
is less than the number in the instruction is passed to the
array as ' 1 ' .

(c) Level select: Only those data points having the same
value as the number in the instruction are passed to the
array as T s .

(d) Bit select: In order to facilitate rapid transfer of the
entire grey scale picture into array storage, it is possible to
select and transfer each of the bit strings individually. Thus
in six operations (one for each of the six bits) the entire
picture information can be entered into the array stores.
Output pictures are displayed continuously on a monitor
screen, except when the output stores are being updated
with new data from the array. The system permits manual

Fig. 4 Possible Clip 4 tessellations

a Hexagonal
b Square — 4
c Square - 8

220

selection of any combination of the output stores, and
various modes of mixing the output display with the picture
direct from the t.v. camera or input stores.

A channel is provided in the I/O whereby data may be
transferred between the array and, for example, the core
store of an interfaced minicomputer.

Additionally, compressed data from the array, for
example a count of the number of objects in a picture, can
be transferred to a control register for analysis purposes.
The contents of this register are also presented for inspection
on the console.

3 Software

3.1 Programming language

Since the Clip structure is unlike that of a conventional
computer, a special programming language has been deve-
loped for handling operations within the array of processors.
The array instructions are as follows:

{\)Load: These load either the A or B register bits
in each processor from a specified address in the associated
D register, e.g.
Load AfromD18:LDA18
Load B from D address specified, plus the contents of
Register 3 :*LDB 10(3).

(ii) Set: This sets up all required control bits for array
operation but does not start the operation. It has the
following operand fields:

(a) that specifying the processor output in terms of the
A and P inputs

(b) that specifying the connectivity directions to be
activated, and the propagation output

(c) a composite field specifying the array configuration,
the array edge state, and the arithmetic operation control
functions.

(iii) Process and store: This initiates a process set up by
the previous SET instruction and stores the result in a
specified D address, e.g. PST 18. Thus a typical one opera-
tion process has the form:

LDA18
LDB20
SET (the required operators)
PST 24

In addition to these 'array' instructions there are input/
output instructions, conditional and unconditional branch
instructions, and instructions to permit certain register
operations.

3.2 Typical parallel opera tions

(a) Binary: Typical single-instruction operations on
binary data are: noise removalt, removal of edge-connected
objects, shrink by one layert, expand by one layert, edge
finding, shiftt, determine coincidence of two imagest, and
label (using one image to mark part of a second). Detailed
descriptions of these and other array operations are given
by Duff etal.1

(b) Grey scale processing: In order to implement, for
example, a Forsen gradient on a grey level picture, Clip
requires about four local operations per bit plane. For
a six-bit picture this would take about 650 jus.

*One of 16 indexing registers in the controller
fEach of these local operations takes 25 jus to complete. The time
taken for the remaining operations is dependent on the amount of
data propagation involved

IEEPROC, Vol. 127, Pt. E, No. 5, SEPTEMBER 1980

It is estimated that these processing times, which are
array-size invariant for a parallel processor but not for
a serial computer, and which refer to the Clip 4 array
size of 96 x 96 points, would be about 1 000 times longer
on a serial machine such as an IBM 360.

(c) Arithmetic: Two basic types of arithmetic can be
implemented in the Clip array: binary column arithmetic
and bit plane arithmetic. In the first type of operation,
a maximum of 96 operations can be performed simulta-
neously and the maximum result size is a 96-bit number
for each operation. As an example, the simultaneous
multiplication of 96 pairs of 16-bit numbers takes about
2 ms, giving an effective multiplication time per pair of less
than 25 jus. In bit plane arithmetic, 9 216 operations
are performed simultaneously and the maximum result
size is 16 bits. The overall time taken to add 9 216 pairs
of 16 bit numbers is'about 450 jus, giving an effective
addition time per pair of 50 ns.

4 Applications

The two-dimensional binary array described in Section 2
forms the basis of all the image processing performed
using Clip 4. It is true to say that, at the very low level,
Clip can handle only binary data. This does not mean,
however, that we are confined to binary imagery. In this
Section we will present some applications of Clip to image
processing, giving examples of binary and grey image
algorithms.

4.1 Bit stacks and grey images

To represent grey images in an array form, we use several
D storage planes per image, as shown in Fig. 5.

Do contains the least significant bit of the image and
Dn the most significant bit. To represent an 8 grey tone
image, for example, we need 3 bit planes and, in general,
for an TV grey tone image we need n =log2/V bit planes.
Given two bit stacks of sizes m and n planes, respectively,
one can add them together, subtract one from the other
or multiply them together using software techniques.
In addition to this, one can perform 'within-stack'
operations, i.e. the value of a picture element can be added
or subtracted from the value of any of its neighbouring

pixels. These operations are, of course, simultaneous over
all picture elements, and hence the time taken is independent
of the array size.

4.2 Simple edge de tec tion

Fig. 6 shows an example of a simple edge-detection algorithm
applied both to binary and to grey images. The original
image (Fig. 6a) is a Landsat photograph of N.W. Wales,
and Fig. 6b is a binary thresholded version of the data.
The statement of the parallel algorithm, in words, is:

'Consider each picture point (simultaneously). Subtract
from the value of that picture point the minimum value
in its immediate surround.'

By the immediate surround we mean the 3 x 3 window
centred on the picture point. The binary edge detection
(Fig. 6c) can be performed in one instruction cycle of
Clip, i.e. in ~ 25 jus. The grey algorithm takes a considerably
longer time than this to run (Fig. 6d).

4.3 Labelling

The labelling operation consists of marking an object of
interest in the image field and isolating it from all other
objects in the image. The 'label' (or 'pointer') can consist
of one single point, a set of points or a second object
in another image. Labelling involves propagating a signal
from the 'pointer' to all the ' 1 ' cells (black) that are con-
nected to that point in the image.

An example of binary labelling is shown in Fig. 7. The
image shows a cross-section of rat testes cells viewed under
a microscope (Fig. Id). The 'pointer' is seen in Fig. 1b
and the isolated central cell in Fig. 7c.

Fig. 5 D-level representation of grey images

Dn Most significant

Do Least significant

IEEPROC, Vol. 127, Pt. E, No. 5, SEPTEMBER 1980

Fig. 6 Edge detection algorithm

a Original
b Thresholded
c Binary edge detection
d Grey level edge detection

221

Fig. 7 Binary labelling

a Original
b Pointer
c Isolated cell

Fig. 8 Image filtering

a Original
b Binomial filter
c Laplacian filter

222 IEEPROC, Vol. 127, Pt. E, No. 5, SEPTEMBER 1980

Table 1: Horizontal neighbour addition

», b2

a, + 3j

c, + c

3 + a4 a, + 2a2 + a3 a2 + 2a3

'3 + 64 6^ + 2/>2 +b3 b2 + 2b3

• 3 T c4 Cj + 2c2 + C3 c2 + 2c3

2a4

Original

4.4 Two-dimensional operations

One operation

The within-stack arithmetic operations mentioned previously
can be used to perform two-dimensional filtering operations
on images. To see how this is achieved, let us consider what
happens if we repeat the process of, say, nearest neighbour
addition several times.

Considering the horizontal direction first, Table 1
shows several steps in the addition of nearest neighbour
element values. If we denote the nearest neighbour addition
in the horizontal direction by 2X (IT), where II is the grey
image on which the operator 2X is acting, this is defined at
the local level by

S = Sxy ' Sx+ 1 ,y

where gxy is the value at co-ordinate (x,y).

Fig. 9 Image enhancement

a original
b enhanced image

Two operations

Similarly, we denote the nearest neighbour (horizontal)
difference operation by VX(II), where:

Sxy Sxy Sx +1, y

It is evident, from Table 1, that the weights of the neigh-
bouring cell values that go to make up the new value of
an element follow the binomial sequence, i.e. (2X)2(TI)
has the coefficients (1, 2, 1), (Vx)3 (IT) has coefficients
(1 , - 3 , 3 , - 1) , etc. If, in extending the one-dimensional
case above, we take into account a second direction (ver-
tical), we end up with a two-dimensional 'binomial' filter
e.g.

The effect of this filter on the image is the same as that of
convolving the original with a window of weights.

1

2

1

2

4

2

1

2

1

It produces a low pass effect by 'smoothing' local details.

Fig. 10 Skeletonisation

a Original
b Thresholded original
c Binary skeleton
d Grey level skeleton

IEEPROC, Vol. 127, Pt. E, No. 5, SEPTEMBER 1980 223

Similarly, (V*)2 (Vy)2 (n) has the same effect as con-
volving the image with:

1

- 2

1

- 2

4

- 2

1

- 2

1

This is the well known Laplacian operator in digital images.
It acts as a spot detector. Examples of the two filters above
applied to the data in Fig. 8a are given in Fig. 8& (binomial)
and 8c (Laplacian). The ideal of binomial filters has been
more thoroughly investigated by M. James.2

4.5 Image enhancement

The aim of image enhancement is to sharpen the transition
between 'background' and 'object'. This does not add any
new information to the image (in fact some information
may be lost in the process), but it makes images easier to
interpret.

The parallel algorithm used to perform the enhancement
shown in Fig. 9, from the point of view of each picture
point, is as follows:

'Look at the maximum and the minimum values in your
3 x 3 surround. Which is closer to your own value? Alter
your value to whichever of the two is closer.'
This process can be iterated over many cycles and can be
shown to settle to a steady-state (nontrivial) result.

4.6 Skeletonisation

Skeletonisation is used in image processing to reduce an
object to a minimal form which still retains the topological
information of the original image (connectivity, holes,'
Euler number, etc.)

The binary skeletonisation algorithm was devised by
Cordelia et al.3 The algorithm was extended to cover grey
images by one of the authors and a detailed description

of the two algorithms is given in reference 4. Examples
of these algorithms operating on human chromosomes are
shown in Fig. 10.

5 Summary

A machine, Clip 4, based upon the idea of parallel image
processing, is being developed at University College London.
The array of processors at the core of the machine is
implemented with custom l.s.i. circuits, and operates on
binary data.

A special programming language has been designed to
handle topological operations, and software techniques
have been developed to deal with both grey level and
binary image processing. These techniques are being usefully
applied to a variety of application studies in the fields
of medical prescreening, process control, and satellite data
analysis. The great processing speed advantage available
with this type of machine should bring many more such
applications within reach of automatic analysis.

6 Acknowledgments

The authors wish to thank the following for their assistance
in the preparation of this paper: Miss U. Campbell,
Miss A. Harris and Miss D. Hughes.

References

1 DUFF, M.J.B., WATSON, D.M., FOUNTAIN, T.J., and
SHAW, G.K.: 'A cellular logic array for image processing',
Pattern Recognition, 1973, 5, pp. 229-247

2 JAMES, M.: 'A note on binomial filters'. Image Processing
Group Newsletter 6, University College, London, 1978

3 ARCELLI, C, CORDELLA, L., LEVIALDI,S.: 'Parallel thinning
of binary pictures', Electron. Lett. 1975,11, pp. 148-149

4 GOETCHERIAN, V.: 'From binary to grey tone image processing
using fuzzy logic concepts', Pattern Recognition, 1980, 12,
pp. 7-15

T.J. Fountain graduated from Queen
Mary College, London, with an honours
degree in physics, in 1966. After two
years in industry studying the properties
of thin-film semiconductors, he joined
the Image Processing Group at University
College London. Having presented his

[Master's thesis on low temperature
jradiation detectors in 1972, he began
work on the Clip series of image processing
machines and is now the Group's senior

engineer, with overall responsibility for the production of
the Clip 4 system.

V. Goetcherian was born in Nicosia,
Cyprus, in 1954. He received his B.Sc.
(Eng.) in electronic engineering from
Queen Mary College, London. He was
awarded his Ph.D. in image processing
from the University of London after
three years in the Image Processing
Group at University College London.
He is at present working for Logica.

224 IEEPROC, Vol., 127, Pt. E, No. 5, SEPTEMBER 1980

