Introduction to VLSI Systems

Andreas G. Andreou

andreou@jhu.edu
Electrical and Computer Engineering
Center for Language and Speech Processing
Johns Hopkins University
http://www.ece.jhu.edu/faculty/andreou/AGA/index.htm
natural and synthetic Very Large Scale Integrated (VLSI) systems

The Brain

IBM Blue Gene/L

exist in three dimensional physical space but can deal with problems in hyper-dimensional spaces
let’s see what’s inside Blue Gene/L supercomputer

15 W
130nm Bulk CMOS

25KW

Coteus et.al., IBM J Res Dev, vol. 49, No.2, 2005

Introduction to VLSI Systems
Moore’s law: more of the same or no moore

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Electronics, Volume 38, Number 8, April 19, 1965

1. More transistors per unit silicon area
2. Lower energy costs for computation

Intel Core 2-Duo “Extreme” CPU

200,000,000 components
CCD to CMOS: the paradigm shift in camera technologies

CCD state of the art

Full 6 inch wafer
111,000,000 pixels
1 frame per second!

$10,000,000

Semiconductor Technology Associates

CMOS Cameras

1,300,000 pixels

8,100,000 pixels

21,000,000 pixels

$10

$100

$5000

Introduction to VLSI Systems
and moore or less

...and the end of the single core processor paradigm

• Field Programmable Gate Arrays (FPGAs); Why? fine-grain parallelism with efficient communication flexibility (software approaches)
The Future
Emerging Technologies

- Quantum Computing
- DNA Computing
- Quantum Cellular Automata
- Self Assembly
- Soft Lithography
- uFluidics
- Coulomb Blockade
- Interband Tunneling
- Resonance Tunneling
- Giant Magnetoresistance
- Plastic Electronics
- Photonic Crystals
- Carbon Nanotubes
- Molecular Devices
- Single Quantum Flux
- Electron Interference
- Spintronics
- nano-CMOS
- SOI-CMOS
- 3D-CMOS
- Microsystems
technologies: year 2027

100 \mu m

Human Hair

10 \mu m

Human Cell

Blue light

500 nm

Nanoparticles

MOS transistor

Jie Lab

10 nm B

P-substrate(Bulk)

10 nm

Source

Gate Oxide

Gate

Drain

G

D

S

100000000 X

1 nm
device variability and stochasticity

Pavasovic, Andreou, JVLSI 1994

Fig. 3. Standard deviation of local threshold voltage mismatch in sub-100nm PD-SOI technology [4].

Fig 4: Variation of SRAM static noise margin in sub-100 nm PD-SOI technology [5].

Variability and Power Management in sub-100nm SOI Technology for Reliable High Performance Systems
Koushik Das, Kerry Bernstein, Jeff Burns, Fadi Gebara, Shih-Hsin Lo, Kevin Nowka, Rahul Rao and Michael Rosenfield
IBM Research Division, PO Box 218, Yorktown Heights, NY 10598

IEEE SOI Conference 2008
VLSI systems research in the Andreou Lab
circuits: analog, digital and beyond …

- **CVDT**: Continuous-Value Discrete-Time
 - *CCD*
 - *Switched Capacitor*
- **DVDT**: Discrete-Value Discrete-Time
- **CVCT**: Continuous-Value Continuous-Time
- **DVCT**: Discrete-Value Continuous-Time

Linear and non-linear analog

Asynchronous digital
 - Neuron spikes
 - EPSP
 - Anisochronous Pulse Time Modulation

1986: Let the physics do the work!

\[\max_{i=1,N} \left(\frac{|\bar{x} \wedge \bar{c}_i|}{a + |\bar{c}_i|} \right) \]

System / Architecture

Circuits

Devices / Technology

October 1986 (1st Draft)
embedded analog computing in digital memories

$$\max_{i=1,N} \left(\frac{|\tilde{x} \land \tilde{c}_i|}{a + |\tilde{c}_i|} \right)$$

Winner-Takes-All Associative Memory: A Hamming Distance Vector Quantizer

PHILIPPE O. POULQUEN, ANDREAS G. ANDREOU, AND KIM STROEBEHNI

Received June 30, 1996; Accepted

In an DEC-Alpha based general purpose computer it takes 10000 cycles to do a single pattern matching computation and thus it takes a total of 20µs per classification. Power dissipation is 30W at 500 MHz and therefore the energy per classification is 600µJ. The Pentium-Pro is worse, because it requires 30W at 150 MHz and more than 10000 cycles for a single pattern matching. In contrast, the total current in the WAM is: (124×116×10) nA continuous bias current for the memory cells at 5V. Computation time is approximately 70µs for a total energy per classification of approximately 100 nJ. The power dissipation in
what did we learn?

1. Memory and processing are integrated in a single structure; this is analogous to the synapse in biology.
2. The system has an internal model that is related to the problem to be solved (prior knowledge). This is the template set of patterns to be classified.
3. The system is capable of learning i.e. templates can be changed to adapt to a different character set (different problem). This is done at the expense of storage capacity—we use a RAM based cell instead of a more compact ROM cell—.
4. The system processes information in a parallel and hierarchical fashion in a variable precision architecture. I.e. given the statistics of the problem, most of the computation is carried out with low precision (three or four bit) analog hardware.
5. The system is fault tolerant and gracefully degrades. The same structures that is used in the precision-on-demand architecture can also be used to reconfigure the system for defects in the fabrication process. The components of the chip that are worse matched can be disabled during operation.
the energy costs of computing

\(~ 10^{-16}\)

8-9 bits

DVDT practical limit at 10nm CMOS

\[C = f_{BW} \log_2 \left(1 + \frac{S}{N}\right) \]

\(BitEnergy \triangleq \frac{Power}{Capacity} \rightarrow \frac{[J]}{[bit]} \)
Izhikevich neuron model

- Fast variable \((v) \), slow variable \((u) \) dynamics:
 \[
 v' = 0.04v^2 + 5v + 140 - u + I
 \]
 \[
 u' = a(bv - u)
 \]

- Reset condition:
 if \(v \geq +30 \text{ mV} \), then:
 \[
 v \leftarrow c
 \]
 \[
 u \leftarrow u + d
 \]

micro-architecture

- 16-bit accumulator
- 8-bit synaptic weights
- 128 synapses per neuron

the energy costs of communication

3D CMOS

MIT Lincoln Labs
3Tier CMOS
180 nm SOI technology

- Buried oxide thickness = 400nm
- Silicon substrate thickness = 40nm
- Inter-tier distance = ~7um
- Inter-wafer via = 1.75um x 1.75um
- Inter-wafer via pitch = 1.5 um
- Gate oxide thickness = 4.2nm

- 1.5 Volts, 3M1P process

Enables seamless, integration of heterogeneous wafers.
- Multi Vdd and Tox CMOS
- Multi material systems
multiproject 3D SOI-CMOS run

- Cadence Design Kit for multiple tier CMOS design environment

- 1st Multiproject Run: May 2005
- Chips back April and August 2006

- 2nd Multiproject Run: November 2006

- 3rd Multiproject Run: November 2008
3D Chip Technology

Historically, the steady growth of computer system performance depended on the performance of microprocessors, which depended on the scaling of devices and circuits to smaller dimensions. As scaling on the 2D surface of chips approaches practical limits, 3D technologies offer an opportunity for continued system improvements, even as the progress of scaling slows down. The eight papers in this issue describe the system design opportunities and challenges of 3D chip technology, as well as methods for producing dense arrays of through-silicon vias, thinned silicon, dense area-array silicon–silicon interconnection, chip stacking, and 3D wafer integration. Thermomechanical modeling and the implementation of 3D structures in products are also described.
digital 3D SIMD processor
asynchronous circuits in 3D CMOS

Results

gold – din
green – din ack
red – dout
purple – dout ack

• Block Diagram
 – 5 asynchronous handshake buffers in each path
 • (4 deep FIFO + 1 MUX)
 – Utilizes all three tiers
 • Handshake between tiers

Introduction to VLSI Systems
So how do fabricate our own chips?

http://www.mosis.org/

Key idea: Use a number of different manufacturers to contribute manufacturing capacity to multiuser projects.

- AMI 1500, 500 and 350 nanometer CMOS
- TSMC 350, 250, 180 nanometer CMOS
- IBM SiGe 250 and 180 nanometer BiCMOS
- IBM 45 nanometer SOI CMOS!

520.216 will teach you how to go from a simple idea to a system (chip) that will solve some problem. You will do analysis, design and finally layout and simulation and fabricate your own chip!
Intro VLSI and her friends

- CAD Design of Digital VLSI 520.391
- Mixed Mode VLSI Systems 520.392
- Electronics Design Lab 520.448
- Seminar on Large Scale Analog Computation 520.761/2
- Introduction to MEMS 520.487
- Introduction to Microfabrication 520.495
- MEMS 530.733
- FPGA Synthesis Lab 520.424

More to come; stay tuned!