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Abstract—In this paper, for the first time, we propose
a high-throughput and energy-efficient Processing-in-DRAM-
accelerated genome assembler called PIM-Assembler based on
an optimized and hardware-friendly genome assembly algorithm.
PIM-Assembler can assemble large-scale DNA sequence dataset
from all-pair overlaps. We first develop PIM-Assembler platform
that harnesses DRAM as computational memory and transforms
it to a fundamental processing unit for genome assembly. PIM-
Assembler can perform efficient X(N)OR-based operations inside
DRAM incurring low cost on top of commodity DRAM designs
(∼5% of chip area). PIM-Assembler is then optimized through
a correlated data partitioning and mapping methodology that
allows local storage and processing of DNA short reads to fully
exploit the genome assembly algorithm-level’s parallelism. The
simulation results show that PIM-Assembler achieves on average
8.4× and 2.3× higher throughput for performing bulk bit-
wise XNOR-based comparison operations compared with CPU
and recent processing-in-DRAM platforms, respectively. As for
comparison/addition-extensive genome assembly application, it
reduces the execution time and power by ∼5× and ∼7.5×
compared to GPU.

I. INTRODUCTION

Advances in high-throughput sequencing technologies have
enabled accurate and fast generation of large-scale genomic
data for each individual, and is capable of measuring molec-
ular activities in cells. Genomic analyses, including mRNA
quantification, genetic variants detection, and differential gene
expression analysis, promise to help improve phenotype pre-
dictions and provide more accurate disease diagnostics [1].
Genome assembly refers to the process of taking a large
number of short DNA reads and putting them back together
to realize the original chromosomes from which the DNA
originated. The ultimate goal of a sequence assembler is to
produce long contiguous pieces of sequence (contigs) from
these short reads since the current DNA sequencing technology
cannot read whole genomes in one step [2].

Today’s bioinformatics application acceleration solutions
are mostly based on the Von-Neumann architecture with
separate computing and memory components connecting via
buses and inevitably consumes a large amount of energy in
data movement between them [3]. In the last two decades,
Processing-in-Memory (PIM) architecture, as a potentially
viable way to solve the memory wall challenge, has been
well explored for different applications [4], [5] and especially
processing-in-DRAM architecture has achieved remarkable
success by dramatically reducing data transfer energy and
latency [3], [5], [6]. The key concept behind PIM is to realize
logic computation within memory to process data by leverag-
ing the inherent parallel computing mechanism and exploiting

large internal memory bandwidth. Besides, most of CPU [7]-/
GPU [8]-/ FPGA [9]- and even PIM [4]-based efforts have only
focused on the DNA short read alignment problem, while the
de novo genome assembly problem still relies mostly on CPU-
based solutions [10]. There are multiple CPU-based genome
assembly tools implementing the bidirected deBruijn graph
model for genome assembly such as Velvet [11], etc. However,
only a few GPU-accelerated genome assemblers have been
presented such as GPU-Euler [10]. This mainly comes from
the nature of the assembly workload that is not only compute-
intensive but also extremely data-intensive requiring very large
memories. Therefore adapting such problem to use GPUs with
their limited memory capacities has brought many challenges
[12]. These bottlenecks motivate us to show that the genome
assembly problem can exploit the large internal bandwidth of
DRAM chip for PIM acceleration. Moreover, with a careful
observation of genome assembly workload, it turns out this
task heavily relies on comparison and addition operations.
However, due to the intrinsic complexity of X(N)OR logic,
the throughput of processing-in-DRAM platforms [3], [5], [6],
[13] unavoidably diminishes when dealing with such bulk
bit-wise operations. This is because majority/AND/OR-based
multi-cycle operations and required row initialization in the
previous designs [3], e.g., Ambit [5] imposes 7 memory cycles
to implement X(N)OR logic.

In this work, we explore a highly-parallel and PIM-friendly
implementation of deBruijn-based genome assembly that can
accelerate genome assembly task. Overall this paper makes
the following contributions: (1) To the best of our knowl-
edge, this work is the first that designs a high-throughput
X(N)OR-friendly PIM architecture exploiting DRAM arrays.
We develop PIM-Assembler based on a set of novel microar-
chitectural and circuit-level schemes to realize a data-parallel
computational unit for genome assembly; (2) We reconstruct
the existing genome assembly algorithm such that it can be
implemented in PIM platforms. It supports short read analysis,
graph construction, and traversal. (3) We propose a dense
data mapping and partitioning scheme to process the indices
locally and handle various length DNA sequences. (4) We
extensively assess and compare PIM-Assembler’s performance
and energy-efficiency with GPU and recent PIM platforms.

II. PIM-ASSEMBLER ARCHITECTURE
A. Architecture

PIM-Assembler is designed to be an independent, high-
performance, energy-efficient accelerator based on main mem-
ory architecture to accelerate a wide variety of applications.
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Figure 1: (a) The PIM-Assembler’s memory organization and
contro, (b) Block level scheme of computational sub-array.

The main memory organization of PIM-Assembler is shown
in Fig. 1a based on typical DRAM hierarchy. Each memory
matrix (MAT) consists of multiple computational sub-arrays
connected to a Global Row Decoder (GRD) and a shared
Global Row Buffer (GRB). According to the physical address
of operands within memory, PIM-Assembler’s Controller (Ctrl)
is able to configure the sub-arrays to perform data-parallel
intra-sub-array computations. A low-overhead Digital Process-
ing Unit (DPU) is also considered in MAT-level to perform
simple non-bulk bit-wise operations, as will be discussed later.
We divide the PIM-Assembler’s sub-array row space into two
distinct regions as depicted in Fig. 1b: 1- Data rows (1016
rows out of 1024) connected to a regular Row Decoder (RD),
and 2- Computation rows (8-labeled by x1, ..., x8), connected
to a Modified Row Decoder (MRD), which enables multi-
row activation required for bulk bit-wise in-memory operations
between operands. PIM-Assembler’s computational sub-array
is developed to perform XNOR and addition operations lever-
aging charge-sharing among different rows.

With a careful observation on the existing processing-in-
DRAM platforms, we realized that they are dealing with
different challenges such as Low Reliability due to three/five
row activation mechanisms [5], [6], Row Initialization [5],
and Extremely-Low Throughput X(N)OR [3], [5], [6], which
could be alleviated by rethinking about Sense Amplifier (SA)
circuit. Our key idea is to perform in-memory logic operations
through a new two-row activation mechanism. To achieve
this goal, we propose a new reconfigurable SA, as shown
in Fig. 2a, developed on top of existing DRAM circuitry. It
consists of a regular DRAM SA equipped with add-on circuits
including two inverters, one AND gate, one XOR gate, a D-
latch, and one 4:1 MUX, controlled with five enable signals
(Enm, Enx, Enmux, Enc1, Enc2). This design leverages the
basic charge-sharing feature of DRAM cell and elevates it
to implement XNOR2 and addition functions between the
selected rows through static capacitive functions in one and
two cycles, receptively. To implement capacitor-based logic,
we use two different inverters with shifted Voltage Transfer
Characteristic (VTC), as shown in Fig. 2b. In this way, a
NAND/NOR logic can be readily carried out based on high
switching voltage (Vs)/low-Vs inverters with standard high-
Vth/low-Vth NMOS and low-Vth/high-Vth PMOS transistors.
It is worth mentioning that utilizing low/high-threshold voltage
transistors along with normal-threshold transistors have been
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Figure 2: (a) New sense amplifier design for PIM-Assembler,
(b) VTC and truth table of the SA’s inverters.

accomplished in low-power application, and many circuits
have enjoyed this technique in low-power design [14]. Fig.
2a shows the detailed control signals of PIM-Assembler’s
sub-array to implement different memory and in-memory
logic functions. PIM-Assembler’s ctrl activates Enm and
Enx control-bits simultaneously (when MUX is deactivated-
Enmux=0) to perform typical memory write/read operation.
In memory operations, MUX’s output voltage is high-z and
BL voltage is solely determined in sense amplification state
through two normal-Vs back-to-back inverters, just like normal
DRAM’s SA mechanism.

Now, considering Di and Dj operands (in Fig. 2a) are
copied (RowCloned [15]) from data rows to x1 and x2 com-
putational rows, and both BL and BL are precharged to Vdd

2
(Precharged State). PIM-Assembler’s ctrl first activates two
WLs in computational row space (here, x1 and x2) through
the modified decoder for charge-sharing when all the other
enable signals are deactivated. During sense amplification
state, by setting the proper enable set (01110 for XNOR2),
the input voltage of both low- and high-Vs inverters in the
reconfigurable SA can be simply derived as Vi = n.Vdd

C ,
where n is the number of DRAM cells storing logic ‘1’ and
C represents the total number of unit capacitors connected
to the inverters (i.e. 2 in our mechanism). Now, the low-Vs

inverter acts as a threshold detector by amplifying deviation
from 1

4Vdd and realizes a NOR2 function, as tabulated in the
truth table in Fig. 2b. At the same time, the high-Vs inverter
amplifies the deviation from 3

4Vdd and realizes a NAND2
function. Accordingly, we added a CMOS AND gate with
one inverted input to realize XOR2 function between Di and
Dj . Now, SA’s MUX can be readily reconfigured through the
selectors to assign XOR2 value and its complementary logic
to BL and BL, respectively. As can be seen, XNOR2 result
can be produced in a single cycle on the BL. To realize addi-
tion operation, PIM-Assembler supports Ambit’s Triple Row
Activation (TRA) mechanism [5] to generate Carry logic in
a single cycle, where the result of this operation is stored in
the SA’s latch. The Ambit implements 3-input majority-based
operations in memory by issuing the ACTIVATE command to
three rows simultaneously followed by a single PRECHARGE



command. By activating the latch enable, the add-on XOR
gate can generate Sum output in one cycle between two new
input data and Carry from previous cycle. The result is then
inverted on the BL (Sum) and written back to the memory.

B. Performance Assessment
To assess the performance of PIM-Assembler as a new

PIM platform, a comprehensive circuit-architecture evaluation
framework and two in-house simulators are developed. 1- At
the circuit level, we developed PIM-Assembler’s sub-array
with new peripheral circuity (SA, MRD, etc.) in Cadence
Spectre with 45nm NCSU Product Development Kit (PDK)
library [16] to verify the two-row activation mechanism and
achieve the performance parameters. 2- An architectural-level
simulator is built on top of Cacti [17]. The circuit level results
were then fed into our simulator. It can change the configu-
ration files corresponding to different array organization and
report performance metrics for PIM operations. The memory
controller circuits are designed and synthesized by Design
Compiler with a 45nm industry library. 3- A behavioral-level
simulator is developed in Matlab to calculate the latency and
energy that PIM-Assembler spends on different tasks. Besides,
it has a mapping optimization framework to maximize the
performance according to the available resources. The transient
voltage simulation results of our PIM mechanism to realize
single-cycle in-memory XNOR2 operation is shown in Fig.
3a. In this case, MUX’s selectors are configured to set BL
voltage with XOR2 result. We can see that cell’s capacitor is
accordingly charged to Vdd when DiDj=00/11 or discharged
to GND when DiDj=10/01 during sense amplification state.
• Throughput: We evaluate and compare the PIM-

Assembler’s raw performance with different computing units
and accelerators including a Core-i7 Intel CPU [18] and
an NVIDIA GTX 1080Ti Pascal GPU. In PIM domain, we
shall restrict our comparison to four recent processing-in-
DRAM platforms, Ambit [5], DRISA-1T1C (D1) [3], DRISA-
3T1C (D3) [3], and HMC 2.0 [19], to handle two operations.
To have a fair comparison, we report PIM-Assembler’s and
other PIM platforms’ raw throughput implemented with 8
banks with 1024×256 computational sub-arrays. The Intel

Figure 3: (a) The transient simulation of in-memory XNOR2
operation, (b) Throughput of XNOR2 and addition operations
implemented by different platforms.
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Variation TRA 2-Row act.
±5% 0.00 0.00
±10% 0.18 0.00
±15% 5.5 1.6
±20% 17.1 11.2
±30% 28.4 18.1

Table I: Process variation.

CPU consists of 4 cores and 8 threads working with two
64-bit DDR4-1866/2133 channels. The Pascal GPU has 3584
CUDA cores running at 1.5GHz and 352-bit GDDR5X. The
HMC has 32-10 GB/s bandwidth vaults. Accordingly, we
develop an in-house micro-benchmark to run the operations
repeatedly for 227/228/229-bit length input vectors and report
the throughput of each platform, as shown in Fig. 3b. We
observe that either the external or internal DRAM bandwidth
has limited the throughput of the CPU, GPU, and even HMC
platforms. Besides, our platform (indicated by P-A) improves
the throughput on average by 2.3×, 1.9×, 3.7× compared with
Ambit [5], D1 [3], and D3 [3], respectively. This mainly comes
from the single cycle X(N)OR mechanism that eliminates
the need for row the initialization in Ambit and multi-cycle
DRISA mechanism.
• Software Support: PIM-Assembler is developed based on

ACTIVATE-ACTIVATE-PRECHARGE command a.k.a. AAP
primitives and most bulk bitwise operations involve a sequence
of AAP commands. To enable processor to efficiently commu-
nicate with PIM-Assembler, we developed three types of AAP-
based instructions that only differ from the number of activated
source or destination rows: 1- AAP (src, des, size)
that runs the following commands sequence: 1) ACTIVATE a
source address (src); 2) ACTIVATE a destination address
(des); 3) PRECHARGE to prepare the array for the next
access. The size of input vectors for in-memory computation
must be a multiple of DRAM row size, otherwise the appli-
cation must pad it with dummy data. The type-1 instruction
is mainly used for copy function; 2- AAP (src1, src2,
des, size) that performs two-row activation method by
activating two source addresses and then writes back the result
on a destination address; 3- AAP (src1, src2, src3,
des, size) that performs Ambit-TRA mechanism [5] by
activating three source rows and writing back the result on a
destination address.
• Reliability: We performed a comprehensive circuit-level

simulation to study the effect of process variation on both two-
row activation and TRA methods considering different noise
sources and variation in all components including DRAM
cell (BL/WL capacitance and transistor, shown in Fig. 4)
and SA (width/length of transistors-Vs). We ran Monte-Carlo
simulation in Cadence Spectre (DRAM cell parameters were
taken and scaled from Rambus [20]) under 10000 trials and
increased the amount of variation from ±0% to ±30% for
each method. Table I shows the percentage of the test error in
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Procedure: Hashmap(S, k)
for i  0 to length(S)-k +1:

              k_mer  S[i to i+k]       

else

       Return Hmap

CGTGC     2
GTGCG     1
TGCGT     1
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GTGCT      1
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Hash Table
k_mer   value

Procedure: DeBruijn (Hashmap, k)
for each k_mer in Hmap.keys():

node_1  k_mer [0 to k-2]

       Return Nodes and Edges

 node_2  k_mer[1 to k-1]
MEM_insert node_1 into Nodes_list

      MEM_insert edges_list (node1, node2) 

Procedure: Traverse (G)
for i  0 to i<N:

(b) (c)

if G[i][j] > 0       [ ][j[[ ]

if G[j][i] > 0       

Fleury-Algorithm(G, v, edge_count, out_degree[])
       Return Euler path 

out_degree[i]  PIM_Add (out_degree[i] + int(G[i][j]))
Edge_count   PIM_Add (Edge_count, 1)

in_degree[i]  PIM_Add (in_degree[i] + int(G[i][j]))
Edge_count PIM_Add (Edge_count + 1)

            if PIM_XNOR (k_mer, Hmap) == 1:
                   MEM_insert (k_mer, 1)

                   New_freq PIM_Add (k_mer, 1)
                  MEM_insert (k_mer, New_freq) 

Figure 5: (a) Genome assembly stages, (b) The hash table generation example and PIM-friendly algorithm, (c) DeBruijn graph
construction and traversing stage for contig. generation stage.

each variation. We observe that even considering a significant
±10% variation, the percentage of erroneous 2-row activation
mechanism across 10000 trials is zero, where TRA method
shows a failure with 0.18%. By scaling down the transistor
size, the process variation effect is expected to get worse
[5], [15]. Since PIM-Assembler is mainly developed based
on existing DRAM structure and operation with slight mod-
ifications, different methods currently-used to tackle process
variation can be also applied for PIM-Assembler. Therefore,
PIM-Assembler offers a solution to alleviate different bottle-
necks in current processing-in-DRAM designs.
• Area Overhead: To estimate the area overhead of PIM-

Assembler on top of commodity DRAM chip, three hardware
cost sources must be taken into consideration. First, add-
on transistors to SAs; in our design, each SA requires ∼50
additional transistors connected to each BL. Second, the 3:8
MRD overhead; we modify each WL driver by adding two
more transistors in the typical buffer chain, as depicted in Fig.
2a, so there is only 16 add-on transistors for computational
rows. Third, the Ctrl’s overhead to control enable bits. To
sum it up, PIM-Assembler imposes 51 DRAM rows (51×256
transistors) per sub-array, at the most, which can be interpreted
as ∼ 5% of DRAM chip area.

III. PIM-ASSEMBLER ALGORITHM AND MAPPING
The genome assembly algorithm consists of three stages

visualized in Fig. 5a, first, k-mer analysis to create a hashmap
(hash table) out of chopped short reads (k-mers), second,
contig generation to construct deBruijn graph with hashmap
and traverse through it for Euler path and third, scaffolding
to close the gaps between contigs, which is the result of the
denovo assembly [2]. The first two stages always take most
fraction of execute time and computational resources (over
80%) in both CPU and GPU implementations [2]. Therefore,
we mainly focus on parallelizing these steps using PIM-
Assembler’s functions, and leave stage-3 as our future work.
• k-mer analysis: Fig. 5b shows the reconstructed

Hashmap(S,k) procedure in which the algorithm takes k-mer
from original sequence (S) in each iteration, creates a hash
table entry for that, and assigns its frequency (value) to 1.
If the k-mer is already in the table, it will calculate a new
frequency (New freq) by adding the previous frequency by

one and update the value. As shown, hashmap procedure can
be reconstructed through PIM XNOR (comparison), PIM Add
(addition), and MEM insert (memory W/R operation) in-
memory functions. Such functions are iteratively used in every
step of ‘for’ loop and PIM-Assembler is specially designed to
handle such computation-intensive load through performing
comparison, summing, and copying operations. Due to large
memory space requirement for hash table for assembly-in-
memory algorithm, we partition these tables to multiple sub-
arrays to fully leverage PIM-Assembler’s parallelism, and to
maximize computation throughput. The proposed correlated
data partitioning and mapping methodology, as shown in Fig.
6, locally stores correlated regions of k-mer (980 rows) vectors,
where each row stores up to 128 bps (A,C,G,T encoded by 2
bits) and value (32 rows) vectors in the same sub-array. For
counting the frequencies of each distinct k-mer, the ctrl first
reads and parses the short reads from the original sequence
bank to the specific sub-array. As shown in Fig. 6, assuming
S=CGTGTGCA as the short read, the k-mers- ki-ki+n are
extracted and written into the consecutive memory rows of k-
mer region. However, when a new query such as ki+3 arrives
(while ki-ki+2 are already in the memory), it will be first
written to the temp region. A parallel in-memory comparison
operation can be performed between temp data and already-
stored k-mers. Fig. 7 intuitively shows PIM XNOR procedure,
where entire temp row can be compared with a previous k-mer
row in a single cycle. Then, a built-in AND unit in DPU readily
takes all the results to determine the next memory operation
according to the algorithm.
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• Contig generation: For graph construction and traversal,
we adopt interval-block partitioning method to balance work-
loads of each PIM-Assembler’s chip and maximize parallelism.
We utilize hash-based method [21], [22] to divide the vertices
into M intervals and then divide edges into M2 blocks as
Fig. 8 (partitioning stage). Then each block is allocated to a
chip and mapped to its sub-arrays. Having an N -vertex sub-
graph with Ns activated sub-arrays (size=a × b), each sub-
array can process n vertices (n ≤ f |n ∈ N, f = min(a, b)).
So, the number of sub-arrays for processing an N -vertex sub-
graph can be formulated as, Ns =

⌈
N
f

⌉
(allocation stage). In

this stage, the designated graph is converted to an adjacency
matrix and mapped to consecutive rows of PIM-Assembler’s
sub-arrays. The reconstructed DeBruijn (Hashmap,k) and Tra-
verse (G) procedures in Fig. 5 deal with massive number of
iteratively-used MEM insert and PIM Add operations. In the
interest of space, we focus on out/in degree calculation in
traverse procedure, which basically sums up all the entries of
a particular node i of valid links connected to a vertex to find
the start vertex. Fig. 8 shows an intuitive example of hardware
mapping and acceleration of such operation performed by
PIM-Assembler for a sample graph converted to adjacency
matrix and mapped to consecutive rows of PIM-Assembler’s
sub-arrays. To perform parallel addition operation and generate
initial Carry (C) and Sum (S) bits (mapping stage), PIM-
Assembler takes every three rows to perform a parallel in-
memory addition. The results are written back to the memory
reserved space (Resv.). Then, next step only deals with multi-
bit addition of resultant data starting bit-by-bit from the LSBs
of the two words continuing towards MSBs. This process
concluded after 2 × m cycles, where m is number of bits
in elements. At the end the degree of each vertex is stored in
memory (e.g., in Fig. 8, 4 determines the degree of vertex 1).

IV. PERFORMANCE ESTIMATION

• Setup: To the best of our knowledge, this work is the
first to discuss the PIM platform’s performance for genome
assembly problem, therefore, we create the evaluation test
bed from scratch. We configure the PIM-Assembler’s memory
sub-array with 1024 rows and 256 columns, 4×4 mats (with
1/1 as row/column activation) per bank organized in H-
tree routing manner, 16×16 banks (with 1/1 as row/column
activation) in each memory group. For comparison with other
PIM platforms, an identical physical memory configuration is
also considered henceforth. We conduct our experiment on
human chromosome-14 data-set. We create the short reads
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Figure 8: PIM-Assembler’s partitioning, allocation and map-
ping to accelerate PIM Add operation.

(45,711,162) with the length of 101 (total memory requirement
∼9.2GB), by randomly sampling the chromosome extracted
from the NCBI genome databases [23]. We set the k-mer
length, k, to 16, 22, 26, and 32, as typical values for most
genome assemblers in order to run and estimate the perfor-
mance of three main procedures in genome assembly show in
Fig. 5 i.e. hashmap, deBruijn, and traverse.
• Execution Time: Fig. 9a reports and compares the

execution time of PIM-Assembler with the under-test GPU
platform used in Section II.B and other processing-in-DRAM
platforms including Ambit [5], DRISA-3T1C and DRISA-
1T1C [3]. As shown, hashmap procedure for k-mer analysis
takes the largest fraction of execution time and power in
GPU platform (over 60%). We observe that our X(N)OR-
friendly platform can accelerate the hashmap generation by
∼5.2× compared with GPU platform when k=16. Now, by
increasing the k-length to 32, the higher speed-up is even
achievable (∼9.8×). As for PIM Add, and MEM insert in-
memory functions used in deBrujin and traverse procedures,
we can see PIM-Assembler outperforms the GPU platform
by 4.2× higher performance. Overall, we observe that PIM-
Assembler reduces the execution time on average by 5×, 2.9×,
2.5× and 2.8× as compared to GPU, Ambit [5], DRISA-3T1C
and DRISA-1T1C [3] platforms, respectively.
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Figure 9: The breakdown of (a) Execution time and (b) Power
consumption for different platforms running different k-mer-
length genome assembly task. In each bar group from left
to right: GPU, PIM-Assembler (indicated as P-A), Ambit,
DRISA-3T1C (D3), DRISA-1T1C (D1).



• Power: We report the estimated power consumption of
different platforms for running different length k-mers. Based
on Fig. 9b, PIM-Assembler shows the least power consump-
tion (on average 38.4W) to run the three main procedures,
as compared with the GPU and other PIM platforms. The
PIM-Assembler reduces the power consumption by ∼7.5×
compared with the GPU platform. Besides, it achieves ∼2.8×
lower power vs. the best PIM platform.
• Trade-offs: We explore the efficiency of the platform by

adjusting the number of active sub-arrays (Ns) in processing
the PIM XNOR and PIM Add functions. We define a paral-
lelism degree (Pd) i.e. the number of replicated sub-arrays to
increase the performance, e.g., when Pd is set to 2, we use two
parallel sub-arrays to simultaneously process the functions.
It turns out such parallelism enhances the performance of
genome assembly by sacrificing the chip area and power
consumption. Based on this, we plotted Fig. 10 to show the
trade-off between power and delay vs. Pd for two distinct k-
mer lengths i.e. 16 and 32. It can be seen that the larger Pd is,
the smaller delay and higher power consumption are resulted
for both configurations. Therefore, we determine the optimum
performance of PIM-Assembler, where Pd w2.
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Figure 10: Trade-off between power consumption and delay
w.r.t parallelism degree in k=16 and k=32.
• Memory Wall: Fig. 11a reports the Memory Bottleneck

Ratio (MBR), as the time that the computation waits for data
and on-/off-chip data transfer blocks the performance. We
conduct the evaluation w.r.t. the peak throughput for each
platform in two distinct k-mer lengths considering number of
memory access. The results indicate the PIM-Assembler and
other PIMs’ efficiency for solving memory wall issue. We
see that PIM-Assembler uses less than ∼16% time for data
transfer due to the PIM acceleration schemes, while GPU’s
MBR increases to 70% when k=32. The smaller MBR can
be translated as the higher Resource Utilization Ratio (RUR)
for the accelerators plotted in Fig. 11b. We observe PIM-
Assembler has the highest RUR with up to ∼65% when k=16.
Overall, PIM solutions give a higher ratio (>45%) compared
to the GPU authenticating the results in Fig. 11a.
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Figure 11: (a) The memory bottleneck ratio and (b) resource
utilization ratio.

V. CONCLUSION
In this work, we presented PIM-Assembler, as a new PIM ar-

chitecture to address some of the existing issues in state-of-the-
art DRAM-based acceleration solutions for performing bulk
bit-wise X(N)OR-based operations. Accordingly, we show
how PIM-Assembler can accelerate the comparison/addition-
extensive genome assembly application using PIM-friendly
operations. The simulation results on human-ch14 shows that
this new platform reduces the execution time and power by
∼5× and ∼7.5× compared to GPU.
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