Monolithic Polarization and Phase Diversity Coherent Receiver in Silicon

Christopher R. Doerr, Fellow, IEEE, Fellow, OSA, Peter J. Winzer, Fellow, IEEE, Member, OSA, Young-Kai Chen, Fellow, IEEE, S. Chandrasekhar, Fellow, IEEE, Mahmoud S. Rasras, Long Chen, Tsung-Yang Liow, Member, IEEE, Kah-Wee Ang, Member, IEEE, and Guo-Qiang Lo, Member, IEEE

Abstract—In this paper, we realized a monolithic silicon photonic integrated circuit (PIC) for polarization and phase diversity coherent detection. The PIC includes two polarization beam splitters, two 90° optical hybrids, and four pairs of balanced photodiodes implemented as integrated germanium detectors. We tested the PIC using polarization-division multiplexed quadrature phase-shift keying signals at 43 and at 112 Gb/s.

Index Terms—Crystals, germanium, gratings, integrated optics, integrated optoelectronics, silicon.

I. INTRODUCTION

COHERENT detection converts the amplitude, phase, and polarization of an optical signal into the electrical domain, offering high sensitivity, high spectral efficiency, and the possibility of electronic compensation of signal impairments [1]–[4]. However, a coherent receiver requires many individual optical and optoelectronic components, including two polarization beam splitters, two 90° optical hybrids, and eight photodetectors (PDs) for its preferable implementation using balanced detection. Balanced detection requires accurately matched insertion losses and path lengths in many of the intercomponent connections. Because of this complexity, today’s coherent receivers often use only single-ended detection. The drawbacks of single-ended detection are that the local oscillator (LO) power must be at least ~15-dB higher than the signal, the LO laser intensity noise must be low, and the signal dynamic range is small [5]–[7].

Monolithic integration of the entire coherent receiver in a photonic integrated circuit (PIC) miniaturizes the optoelectronic front end. Furthermore, lithographic connections facilitate path-length matching and balancing, so the superior performance of balanced detection is readily obtained. Compared to hybrid integration, PICs can significantly reduce the size and packaging cost of optical communication modules [8].

Regarding coherent receivers, there were demonstrations of monolithic single-polarization, single-quadrature PICs [9], [10] and a monolithic dual-polarization, single-quadrature PIC [11] about 20 years ago. Recently, with the resurgence of interest in coherent detection, a monolithic single-polarization dual-quadrature PIC was reported [12]. In this paper, we further characterize a monolithic dual-polarization, dual-quadrature PIC [13]. This PIC is made using silicon-on-insulator waveguides with integrated germanium PDs.

II. DESIGN AND FABRICATION

The layout of the silicon PIC is shown in Fig. 1. The waveguides are 220-nm-high crystalline silicon strips with ~2 μm of oxide upper cladding and 2.0 μm of oxide lower cladding on a silicon substrate. The signal and LO enter the chip vertically through two grating couplers.

A. Grating Couplers

A grating coupler is a photonic crystal that couples a wave traveling normal to a substrate to a wave guided parallel to the substrate [14]. A closeup of one of the couplers is shown in Fig. 2. It consists of a 2-D photonic crystal with a lattice period equal to the wavelength for the transverse-electric (TE) mode in the silicon waveguide (590 nm) and hole etch depth of 90 nm. Light that impinges on the grating from the vertical direction is scattered and phase-matched to travel in the plane of the substrate in a certain direction at the design wavelength and polarization.

Fig. 1. Layout of the coherent receiver PIC. Chip size is 3.6 × 1.6 mm². “Signal” and “LO” point to the two grating couplers.
Each grating coupler acts simultaneously as a fiber coupler with an integrated spot-size converter, a polarization splitter [15], and two 50/50 splitters. Usually grating couplers are used with the fiber at an angle so that each polarization couples to only one waveguide in the wavelength region of interest. In this paper, we orient the fiber exactly perpendicular to the substrate so that each grating coupler has the novel added use of serving as two of the 50/50 couplers in our coherent receiver. Also, by orienting the fiber with zero angle to the normal, we ensure that all polarizations in the fiber have the same coupling efficiency, thus minimizing the polarization-dependent loss [16], [17].

The small second-order in-plane reflection associated with a zero-angle fiber orientation [15] does not cause a significant problem here because the back reflection from the integrated Ge photodetectors is negligible and thus no unwanted Fabry–Perot interferometer is created. Although the intended shape of the holes is square, the holes are nearly circular after lithography. Fig. 2(b) shows the holes after etching. There may be unwanted scattering of light from circular holes into the ±90° directions in plane from the propagation direction, as was used to create a 2-D photonic crystal laser [18].

There is one grating coupler for the signal and one for the LO. They are spaced by the commercial fiber array pitch of 127 μm.

B. Photodetectors

The germanium evanescently coupled waveguide PDs are 8 μm × 100 μm and are grown on top of the silicon core with n doping in the Ge on top and p doping in the Si underneath the Ge and to the sides as described in [19] and shown in Fig. 3. The Ge thickness is 500 nm.

The Ge growth details are as follows. Prior to the Ge epitaxy, the wafers were passivated with 60 nm of SiO2. Windows for selective epitaxial growth were then defined via plasma partial etching followed by dilute HF etching to expose the Si surface. Substrate cleaning prior to epitaxy comprises 5 min in SC-1 (1 : 1 : 5 solution of NH4OH + H2O2 + H2O) followed by 2 min in dilute HF (1 : 200). Rinsing in deionized water was carried out after each cleaning step. The Ge epitaxy growth started with an in situ baking in N2 ambient at 800°C for native oxide removal. This was followed by the deposition of a thin Si buffer (∼5 nm) at 530°C. A thin Si1−xGex layer was then deposited, so as to have a gradual transition from pure Si to pure Ge at the interface. A Ge seed layer (30 nm) was grown at a low temperature of 370°C before Ge growth (500 nm) at a higher temperature of 550°C. Precursor gases of pure disilane Si2H6 and diluted germane GeH4 (10% GeH4 : 90% Ar) were used for the epitaxial growth of SiGe and Ge layers. The Ge layer was doped via ion implantation followed by dopant activation at 500°C for 5 min. Two levels of Al were used for interconnection.

Integration of the Ge photodetectors must be performed after the high-temperature Si processes have been completed, such as the implant activation for Si. On the other hand, the thermal budget impact due to the integration of Ge photodetectors has to be low so that its effect on other active components on the Si is minimized. Hence, a low thermal budget Ge growth process had to be developed. Except for a brief in situ baking step at 800°C, the rest of the process steps were of a much lower thermal budget, with the main Ge growth process step being performed at 550°C.

The eight PDs are arranged in four pairs. The PDs in each pair are connected in series, with n contact of one connected to p contact of the other. All of the pairs are connected to the same two bias connections. These bias connections have on-chip capacitors which connect to the high-speed ground pads.

C. Thermo-Optic Phase Shifters

There is a thin metal strip on the oxide over a waveguide on two of the grating coupler output waveguides. Current can be sent through these metal strips to act as thermo optic phase shifters to adjust the phases in the 90° hybrids.

D. Principle of Operation

The principle of operation is illustrated in Fig. 4. The signal enters in an arbitrary polarization, and the LO enters in a polarization parallel to one of the chip facets. Using the basis set of linear polarizations oriented 45° to the chip facets, the signal and LO are divided into “X” and “Y” polarizations. Once coupled in, all of the light on the chip is TE polarized, but the X polarization propagates along one diagonal and the Y polarization along the other. The four signal and four LO portions from the grating couplers pass through eight waveguides of equal path length and are interfered in four 2 × 2 multimode interference (MMI) couplers. The outputs of the MMI couplers proceed to the four germanium PD pairs.

For example, in the upper diagram of Fig. 4(a), one sees that the X polarization portions of the signal and LO follow the lower left to upper right diagonal. The portions traveling
Fig. 4. Operating principle of the coherent receiver. The two small circles indicate the entrance points of the signal and LO (it does not matter which is for which). The upper and lower figures indicate operation for the “X” and “Y” polarizations (which are 45° polarized in this case), respectively.

Fig. 5. Photograph of the PIC. The electrical connections are indicated. “S” = signal and “G” = ground.

E. Complete PIC

The PIC was made on an 8" silicon wafer using a research-and-development complementary metal–oxide–semiconductor (CMOS) commercial foundry using stepper lithography. Deep ultraviolet lithography (248 nm) and plasma etching were used to define the optical structures. No additional process steps were used to improve the surface roughness of the waveguides. The processes were selected with manufacturability in mind. The finished PIC is shown in Fig. 5.

III. DEVICE RESULTS

The dark current at −1 V for each PD is ~100 nA. Although this is more than 100 times that of a typical InGasAs/InP PD, it is low enough for a coherent receiver, where typical average photocurrents are 1 mA or higher. The waveguide-to-PD responsivity is ~0.75 A/W. The PD 3-dB bandwidth with a 50-Ω load is ~5 GHz, limited by high junction capacitance, estimated to be ~480 fF. This could be improved by reducing the PD size. It is predicted that the length could be shortened by more than half without sacrificing responsivity. For the experiment, we used terminated 50-Ω probes, and thus the load is 25 Ω. However, because each PD pair has two diodes connected in series, the capacitance is doubled and thus the bandwidth is still ~5 GHz.

We coupled to the top of the PIC using a standard nonangled fiber v-groove array, with index-matching oil between the fiber and the PIC. The responsivity from the fiber to any PD versus wavelength is shown in Fig. 6. The wavelength dependence is due to the grating couplers; the 3-dB bandwidth is 54 nm. The overall responsivity includes the inherent 6-dB splitting loss of the 90° hybrids, so the excess loss at 1544 nm from fiber to photocurrent is 8 dB (the ideal responsivity is 1.25 A/W). This is 1 dB better than reported in [13], because we did not use index-matching oil in that previous experiment. The roughly estimated loss breakdown is shown in Table I. This reported grating coupler efficiency is when the fiber coupling is optimized for one polarization. When optimizing for both polarizations simultaneously, there is an additional ~3-dB insertion loss due to the fact that the grating is not apodized [20]. This is because a nonapodized grating gives an exponentially shaped optical field, and thus the optimum position for coupling to any particular output waveguide is not in the center of the grating coupler in a nonapodized grating.

We observed some dependence of the hybrid phase on the signal or local oscillator polarization. This may be due to some coupling from the fiber to the transverse magnetic polarization in the waveguides.

<table>
<thead>
<tr>
<th>Component</th>
<th>Estimated insertion loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grating coupler</td>
<td>4 dB</td>
</tr>
<tr>
<td>Waveguide propagation</td>
<td>1 dB</td>
</tr>
<tr>
<td>2 × 2 MMI coupler</td>
<td>1 dB</td>
</tr>
<tr>
<td>PD responsivity</td>
<td>2 dB</td>
</tr>
<tr>
<td>Total</td>
<td>8 dB</td>
</tr>
</tbody>
</table>

Fig. 6. Measured fiber-to-PD responsivity versus wavelength. This value includes the inherent 6-dB splitting loss of the 90° hybrid.
IV. SYSTEM CHARACTERIZATION

We tested the system performance of the PIC by launching a 43-Gb/s polarization-division multiplexed (PDM) quadrature phase-shift-keyed (QPSK) signal with in-phase (I) and quadrature (Q) components consisting of delayed copies of a $2^{15} - 1$-b-long pseudorandom bit sequence (PRBS) into the signal port and continuous-wave light into the LO port, both at 1547 nm, as shown in Fig. 7(a). Both signal and LO lasers were external cavity lasers with \sim100-kHz linewidths. We set the LO polarization to make the LO power split in equal portions for the X- and Y-polarizations on the chip. We used two 50-Ω terminated dual ground-signal-ground probes and connected them to a real-time oscilloscope. We applied 1.3 V to the PD bias connections. We drove the two thermo-optic phase shifters with \sim2 and \sim4 V, respectively, to achieve the proper phases for the 90° hybrids. By comparing the received signal with and without the LO present, we measured the common-mode rejection ratio of the balanced detection to be \sim10 dB over all frequencies of interest.

We recorded traces with 10^6 samples at 50 GSamples/s and a nominal 8-b resolution (the effective resolution is \sim5 b). We processed the data offline to recover the symbol constellations and calculate the bit error rate (BER). We used the constant modulus algorithm (CMA) in a butterfly structure for blind adaptive equalization and source separation and standard algorithms for the frequency and phase estimation [3]. The impulse response of each of the four butterfly subfilters spanned eight symbols. We used differential decoding to avoid cycle slips.

The 43-Gb/s results are shown in Fig. 8. We achieved a BER of 10^{-3} at 12.4 dB optical signal-to-noise ratio (OSNR). This performance is 1.6 dB from reported receivers using discrete components [4] and \sim2.7 dB from the theoretical limit.

We repeated the experiment but this time at 112 Gb/s and 1550.12 nm. Despite the fact that the limited PD bandwidth severely limited the performance (the symbol rate is 28 GHz, yet the PD bandwidth is 5 GHz), at full OSNR we recovered the signal constellations shown in Fig. 9. This indicates that the frequency roll-off of the PD response is gradual and so can be somewhat compensated for digitally.

V. CONCLUSION

We proposed and realized a monolithic polarization and phase diversity coherent receiver in silicon and tested it at 43 and 112 Gb/s. Because it is made in silicon it can be made on large wafers with similar equipment used for high volume electronics, favoring low cost. It could eventually be monolithically integrated with CMOS transistor circuits, such as linear transimpedance amplifiers, which benefit from a short distance between the PD and the transistors.

ACKNOWLEDGMENT

The authors would like to thank D. Gill, J. Weiner, and M. Earnshaw for assistance and discussions and D. Neilson and M. Zirngibl for support.
REFERENCES

S. Chandrasekhar (M’90–SM’00–F’01) received the B.Sc., M.Sc., and Ph.D. degrees in physics from the University of Bombay, Bombay, India, in 1973, 1975, and 1985, respectively. He was at the Tata Institute of Fundamental Research, Bombay, India, from 1975 to 1985 and at AT&T Bell Laboratories (later called Lucent Technologies, Bell Laboratories and more recently called Bell Labs, Alcatel-Lucent), Crawford Hill Laboratory, Holmdel, NJ, from 1986 to the present. He initially worked on compound semiconductor devices and high-speed optoelectronic integrated circuits (OEICs). Since January 1999, he has been responsible for forward looking research in WDM Optical Networking. His current interests include 40 and 100 Gb/s transport and networking, advanced modulation formats, and electronic signal processing at the receiver. He is a DMTS at Bell Labs. He holds 18 U.S. patents.

Dr. Chandrasekhar is a member of the IEEE Lasers and Electro-Optics Society, and was an Associate Editor of the IEEE PHOTONICS TECHNOLOGY LETTERS for over ten years. He has been a member of the technical program committees of the IEDM, the DRC, and the OFC conferences. He was awarded the IEEE LEOS Engineering Achievement for 2000 and the OSA Engineering Excellence Award for 2004 for his contributions to OEICs and WDM systems research.

Mahmoud S. Rasras received the Ph.D. degree in physics from the Catholic University of Leuven, Belgium, in 2000. His research on spectroscopic photon emission microscopy for CMOS-based semiconductor device reliability evaluation and testing was carried out at the Interuniversity Micro Electronics Center (IMEC). In March 2001, he joined the Integrated Photonics Research Department, Bell Labs, Murray Hill, NJ, where he is designing components for next generation optical networks. He is currently working on CMOS-compatible silicon-based integrated photonics circuits toward the monolithic integration of electronics with advanced optical components. He is also involved in research on an all-optical logic technology, where logical functions are realized in a hybrid silica/InP platform.

Tsung-Yang Liow (S’06–M’08) received the B.Eng. and Ph.D. degrees in electrical and computer engineering from the National University of Singapore (NUS), Singapore, in 2003 and 2008, respectively. His research interests include the design and fabrication of sub-10 nm multiple-gate FDSOI and nanowire transistors, as well as performance enhancement techniques such as channel strain engineering. He is currently a Senior Research Engineer with the Institute of Microelectronics, Singapore, working on silicon photonic components and circuits.

Dr. Liow received the NUS Faculty of Engineering Innovation Award in 2003 and the Agency for Science, Technology and Research (A*STAR) Graduate Scholarship in 2004–2007.

Kah-Wee Ang (S’06–M’08) received the B.Eng. degree (first-class honors) in electrical and electronic engineering from Nanyang Technological University, Singapore, the S.M. degree in advanced materials for micro- and nanosystems under the Singapore-MIT Alliance program, and the Ph.D. degree in electrical and computer engineering from the National University of Singapore (NUS), Singapore, in 2008.

At NUS, he had worked on strained transistor technologies and sub-25-nm advanced silicon-on-insulator device design, fabrication, and characterization. In 2002, he was with Chartered Semiconductor Manufacturing Ltd., where he worked on polymide process development. He is currently a Senior Research Engineer with the Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore. Since 2007, he has been working on CMOS-compatible Si photonics technologies. He has authored or coauthored more than 40 journal/conference papers, and a book chapter.

Dr. Ang was a recipient of the 1999–2002 University Engineering Scholarship Award, the 2003 Chartered Recognition Award, the 2004 Marubun Research Promotion Foundation Grant for SSDM conference, the 2003–2004 Singapore-MIT Alliance Scholarship Award, and the 2004–2007 A*STAR Graduate Scholarship Award. In 2007, he received the IEEE Electron Devices Society Ph.D. Student Fellowship Award and the TSMC Outstanding Student Research Gold Award.

Guo-Qiang Lo (S’86–M’92) received the M.S. and Ph.D. degrees in electrical and computer engineering from University of Texas at Austin, in 1989 and 1992, respectively.

He was with Integrated Device Technology, Inc., both in San Jose, CA and Hillsboro, OR, working in Si semiconductor manufacturing areas in process and integration module research and development. Since 2004, he has been with the Institute of Microelectronics (IME) in Singapore. Currently, he is the Laboratory Director for IME’s Semiconductor Process Technology and Program Director of Nanoelectronics and Photonics program. His interests are in novel semiconductor device and integration technology, particularly in nanoelectronics devices and Si-microphotonics. He has authored or coauthored more than 100 peer-reviewed journal and conferences publications, and more than 20 granted U.S. patents.

Dr. Lo is the recipient of IEEE George E. Smith award in 2008 for best paper published in the IEEE ELECTRONIC DEVICE LETTERS in 2007.