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Linearization

A.1 Functions of one variable

Suppose that f : R → R is a function which has derivatives of all orders throughout
an interval containing c, and suppose that

lim
n→∞

fn+1(z)
(n + 1)!

(x− c)n+1 = 0

for some number z between x and c. From Calculus, we know that f(x) is repre-
sented by the Taylor series for f(x) at c:

f(x) = f(c)+fT (c)(x−c)+
f ′′(c)

2!
(x−c)2+· · ·+ f (n)(c)

n!
(x−c)n+· · · (A.1)

Now, if the point c is close to x, that is, if x − c is small, then the second order and
higher terms will contribute little to the sum; thus, f(x) can be approximated by the
first and second terms:

f(x) ≈ f(c) + fT (c)(x− c).

For our purposes, the importance of this approximation is that it is linear in x; for
this reason, this approximation is known as linearization.

Example 19. Linearize the equation f(x) = x3/(x + 1) at the point c = 2 and find
the largest relative error in the region x ∈ [1.5, 2.5]. ut
Solution: We have that f(c) = 8/3. Also,

fT (x) =
2x3 + 3x2

(x + 1)2
; fT (2) =

28
9

.

Thus, our linear approximation of this function is:

f(x) ≈ 28x− 32
9

.
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To find the largest relative error, note that the error is given by “error” = f(x) −
“approximation”. The relative error, δ(x) is the error divided by f(x):

δ(x) =
9x3 − 28x2 + 4x + 32

9x3
.

To find the point with the largest relative error, we differentiate δ(x) and solve for
the local minima and maxima. Our function has a local minimum at x = 2 (this
should be obvious!) and a local maximum at x = −12/7 which is outside our range.
It follows that the maximum relative error in our region must occur at either of the
boundary points: δ(1.5) ≈ 0.18, δ(2.5) ≈ 0.05. ¤

A.2 Multivariable functions

In this previous section we have looked at a function of one variable x. What happens
when f depends on more than one variable? In this case we have a series analogous
to that of Eq. A.1; we first state it for f : R2 → R. In this case, f is a function of
two variables, say x1 and x2: f = f(x1, x2). Provided certain regularity assumptions
hold (infinite differentiability, etc.) we can write

f(x1, x2) = f(c, d)︸ ︷︷ ︸
0 order terms

+
∂f(x1, x2)

∂x1

∣∣∣∣
c,d

(x1 − c) +
∂f(x1, x2)

∂x2

∣∣∣∣
c,d

(x2 − d)

︸ ︷︷ ︸
1st order terms

+
∂2f

∂x2
1

∣∣∣∣
c,d

(x1 − c)2 + 2
∂2f

∂x1∂x2

∣∣∣∣
c,d

(x1 − c)(x2 − d) +
∂2f

∂x2
2

∣∣∣∣
c,d

(x2 − d)2

︸ ︷︷ ︸
2nd order terms

+higher order terms.

Again, we can concentrate on the terms linear in x1 and x2 to approximate f :

f(x1, x2) ≈ f(c, d)+
∂f(x1, x2)

∂x1

∣∣∣∣
x1=c,x2=d

(x1−c)+
∂f(x1, x2)

∂x2

∣∣∣∣
x1=c,x2=d

(x2−d). (A.2)

This equation can be expressed more elegantly as follows. Define the vectors:

x :=
[
x1

x2

]
, c :=

[
c
d

]
and ∇ :=

[ ∂
∂x1
∂

∂x2

]
.

This last vector is the well known Del operator which you would have come across
in both Calculus II and E&M. The approximation (A.2) can then be written as:

f(x1, x2) ≈ f(c, d) + ∇f |x=c · (x− c)

where “ · ” refers to the standard inner product.
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The procedure for linearizing the function f : Rn → R is exactly the same. For
notational convenience we use the vector x ∈ Rn to denote the variables, and the
operator:

∇T :=
[

∂
∂x1

· · · ∂
∂xn

]
.

The linear approximation to f(x) is then:

f(x) ≈ f(c) + ∇f |x=c · (x− c). (A.3)

In essence, a linearization is just a fancy term for computing the hyperplane (another
fancy word!) tangent to a point.

Example 20. Linearize the equation

f(x, y) = 4x3 − 6x2y3 + y5

about the point (x, y) = (1, 1). ut
Solution: We compute the following:

f(1, 1) = −1,
∂f

∂x

∣∣∣∣
(1,1)

= 12x(x− y3)
∣∣
(1,1)

= 0,

and
∂f

∂y

∣∣∣∣
(1,1)

= y2(5y2 − 18x2)
∣∣
(1,1)

= 13. Then

f(x, y) ≈ −1 + 0(x− 1)− 13(y − 1) = −13y + 12. ¤

A.3 Linearizing non-linear differential equations.

We know apply our linearization procedure to non-linear differential equations. The
key point that we need to keep in mind is that the partial derivatives must be taken
with respect to each variable of the differential equation, including the order of the
derivatives. For example, suppose that we have a differential equation depending on
y, ẏ, ÿ, r and ṙ. We can write this differential equation as:

h(y, ẏ, ÿ, r, ṙ) = 0. (A.4)

We define the vector: x =
[
y ẏ ÿ r ṙ

]T
and write the differential equation as

h(x) = 0.
The next step is to find a point x0 at which we need to linearize h(x). Since this

is a differential equation, it only makes sense to linearize about constant solutions.
Why? A linearization is an approximation that is only valid around a region close to
x0. If the derivatives of the variables in x are changing, then the variables are not
going to stay in that region for long, and so the approximation will not be valid for
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very long.1 The point x0 is known as an operating point. Also, since x0 is a solution,
it is important to remember that h(x0) = 0.

In our example, the vector x0 would be points where

x0 =
[
y0 0 0 r0 0

]T ; with h(x0) = 0.

Using (A.3), we can write

0 = h(x) ≈ h(x0) + ∇h|x0
· (x− x0)

Note that the first term in the right hand side of the approximation is 0. It follows
that ∇h|x0

· (x− x0) = 0. Writing

∆x := x− x0 =
[
∆y ∆ẏ ∆ÿ ∆r ∆ṙ

]T
,

we have that

0 = ∇h|x0
· (x− x0)

=
∂h

∂y

∣∣∣∣
x0

∆y +
∂h

∂ẏ

∣∣∣∣
x0

∆ẏ +
∂h

∂ÿ

∣∣∣∣
x0

∆ÿ +
∂h

∂r

∣∣∣∣
x0

∆r +
∂h

∂ṙ

∣∣∣∣
x0

∆ṙ.

Thus, we have a linear differential equation in terms of the ∆y, ∆r, etc.
Typically, we will have more than one equation. Suppose that there exist n equa-

tions hi(x) = 0, for i = 1, . . . , n. This is handled in the exact same way as above.
The only differences are that: a) the operating point has to satisfy all of the equations;
b) we have to linearize all of the equations.

Fig 1: Circuit diagram for Example 21.

Example 21. Consider the circuit diagram of Fig. ??, where there is a non-linear term
whose output voltage y(t) is given by y(t) = 5i(t) + 20i3(t). Given that the circuit
is supposed to operate at a current of 0.1A, find a linear transfer function relating the
output voltage to the input voltage r(t). ut
1 This concept may be somewhat confusing at first, particularly if your choice of variables is

not the most suitable. For example, in a cruise control system in an automobile, an operating
point is a set of conditions such that the velocity, motor speed etc. are constant. Obviously,
you could include an equation to include displacement, which would not be constant (unless
you are parked!) but this is clearly not what a cruise control system is about.
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Solution: In this example we have three signals: i(t), r(t) and y(t). There are two
equations, the first one relates the output voltage to the current:

y(t) = 5i(t) + 20i3(t); (A.5)

the second relates the current to the input voltage. This is given by

0.02
di

dt
+ y + 10 = r. (A.6)

In order to linearize these equations, we must write them in the form of Eq. A.4. The
first of these can be written as

h1(y, i) = 5i + 20i3 − y (A.7)

At the operating point of i0 = .1A, we have that y0 = 0.52V and r0 = 10.52V .
Using the abbreviation “o.p.” for operating point, A.7) can be approximated as

h1(y, i) ≈ h1(0.52, 0.1) +
∂h1

∂y

∣∣∣∣
o.p.

∆y +
∂h1

∂i

∣∣∣∣
o.p.

∆i

0 = 0−∆y + 5∆i + 60i20∆i = 5.6∆i−∆y.

For the second equation we can write:

h2(y, r,
di

dt
) = y + 10− r + 0.02

di

dt
. (A.8)

Again, using our linearization procedure, we can approximate

h2(y, r,
di

dt
) ≈ h2(0.52, 10.52, 0) +

∂h2

∂y

∣∣∣∣
o.p.

∆y +
∂h2

∂r

∣∣∣∣
o.p.

∆r +
∂h2

∂ di
dt

∣∣∣∣∣
o.p.

∆
di

dt

0 = 0 + ∆y −∆r + 0.02∆
di

dt

Taking Laplace Transforms of both of the linear equations, we get 5.6∆I(s) =
∆Y (s) and ∆Y (s) = ∆R(s) + 0.02s∆I(s). Eliminating the variable I(s) in these
two equations gives the desired transfer function

GY R(s) =
∆Y (s)
∆R(s)

=
280

s + 280
. ¤

Fig 2: Inverted pendulum.
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We look at one more example:

Example 22. Consider the inverted pendulum on a cart of Fig. ??. Find the transfer
function from ∆f to ∆θ. ut
Solution: The first step is to use our knowledge of physics to obtain differential
equations for the system. We do this by considering the following two free body
diagrams. Note that we have added a force fp which is that which is acting along the
pendulum arm.

Consider first the equations for the pendulum. There are two displacements that
have to be considered: in the x direction, and in the y direction. The equations are
always of the form F = ma. Using a little trigonometry, we have:

x direction: fp sin θ = m2
d2

dt2 (x + l sin θ)

y direction: m2g − fp cos θ = m2
d2

dt2 (l − l cos θ).

For the cart, we have to consider only one direction:

x direction: − f − fp sin θ = m1
d2

dt2
(x)

We note the following two identities:

d2

dt2
(sin θ) =

d

dt

(
θ̇ cos θ

)
= θ̈ cos θ − (θ̇)2 sin θ

and similarly

d2

dt2
(cos θ) = −(θ̇)2 cos θ − θ̈ sin θ.

Substituting these identities into the three equations above gives us the following
three non-linear differential equations:

fp sin θ = m2

(
ẍ + lθ̈ cos θ − l(θ̇)2 sin θ

)
(A.9)

m2g − fp cos θ = m2l
(
(θ̇)2 cos θ + θ̈ sin θ

)
(A.10)

−f − fp sin θ = m1ẍ (A.11)

in 4 unknowns: x, θ, f and fp.
Our next step is to find an operating point. We set all derivatives to 0 and get



82 A Linearization

fp0 sin θ0 = 0 (A.12)
m2g − fp0 cos θ0 = 0 (A.13)
−f0 − fp0 sin θ0 = 0. (A.14)

From Eq. A.12, we need either fp0 = 0 or sin θ0 = 0.

Case 1: fp0 = 0.

This would imply in Eq. A.13 that m2g = 0 which is physically impossible.

Case 2:

sin θ0 = 0 with θ0 = 0. In this case, we have f0 = 0 and fp0 = m2g. Note that x0

is arbitrary, which should not be too surprising. Let’s linearize about this point. The
first Eq. A.9) can be written as

h1(θ, θ̇, θ̈, ẍ, fp) = −fp sin θ + m2

(
ẍ + lθ̈ cos θ − l(θ̇)2 sin θ

)
= 0.

The partial derivatives are:

∂h1

∂θ

∣∣∣∣
o.p.

= m2

(
−lθ̈ sin θ − l(θ̇)2 cos θ

)
− fp cos θ

∣∣∣
o.p.

= −fp0 = −m2g;

∂h1

∂θ̇

∣∣∣∣
o.p.

= −2m2lθ̇ sin θ
∣∣∣
o.p.

= 0;
∂h1

∂θ̈

∣∣∣∣
o.p.

= m2l cos θ|o.p. = m2l;

∂h1

∂ẍ

∣∣∣∣
o.p.

= m2; and
∂h1

∂fp

∣∣∣∣
o.p.

= − sin θ|o.p. = 0

Remark:Perhaps the biggest source of confusion arises when partial derivatives have
to be taken with respect to different derivatives of a variable; for example θ, θ̇ and θ̈
in this example. Note that because it is a partial derivative, θ and θ̇ are considered to
be completely independent.

Our linearized equation is then

m2

(
l
d2∆θ

dt2
− g∆θ +

d2∆x

dt2

)
= 0

Do the same thing at home to the two equations h2 and h3 obtained from Eq. A.10
and Eq. A.11 in order to get:

∆fp = 0

m2g∆θ + m1
d2

dt2
∆x + ∆f = 0.

We are left with only two equations. can eliminate d2∆x
dt2 to get one equation in

two unknowns:

m2g∆θ + m1g∆θ −m1l
d2∆θ

dt2
+ ∆f = 0.
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Using Laplace Transforms we get

∆Θ(s)
∆F (s)

=
1

m1s2l − (m1 + m2)g
.

This transfer function is strictly proper; it is not stable, since the poles are at

±
√

(m1+m2)g
m1l .

Case 3: sin θ0 = 0 with θ0 = π. In this case, the pendulum is actually hanging
down. (We’ll assume that this is physically possible, which, with a well designed
system, it is.) This obviously is not the most interesting of control systems, but it
will help illustrate a point. Our operating point is now f0 = 0 and fp0 = −m2g
with x0 again arbitrary. Note that the only difference is in the change of sign in fp0.
Our linearization procedure is almost identical (all the partical derivatives will be the
same, the only change is on the operating point). Carrying out all the steps of Case 2,
we get the following transfer function:

∆Θ(s)
∆F (s)

=
−1

m1s2l + (m1 + m2)g
.

This function is also not stable, since the poles are at ±j
√

(m1+m2)g
m1l ; where j =√−1.

Note, however that the poles are just at the boundary. Had we included friction
into our model, we would have had poles in the left hand plane.


