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Linear quadratic control

You have seen that the design of a controller can be broekn down into the following
two parts:

1. Designing a state feedback regulator u = −Kx; and
2. Building a state observer.

You can design controllers where the closed-loop poles are placed at any desired lo-
cation. At this point, you might want to ask the following question. Is there some K
that is better than others? This question leads you into the realm of optimal control
theory. That is, designing controllers which optimize some desirable characteris-
tic. The first, and also best known, problem that has been considered is the linear
quadratic regulator problem. Its rigorous derivation is somewhat tricky and best left
to a graduate course in the area. We can certainly do much better than the presenta-
tion in the book, however, so these notes should help you get started.

7.1 The Problem

We begin with the single-input, single-output system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

with initial condition x(0) = x0. We will assume that the system is controllable and
observable.

Our goal is to minimize a combination of the output and input values:

J(u) =
∫ ∞

0

y2(t) + ρu2(t) dt.

We are already starting to be somewhat non-rigorous (mathematicians would hate
us). Note that I have written an improper integral without worrying whether it is well
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defined. We will assume that any control input we look for is such that u(t) → 0
and y(t) → 0 sufficiently fast so as to make the integral finite. The parameter ρ > 0
is used to weigh the two different goals of the integrand. Large ρ penalizes large
input signals (this serves as a means of preventing saturations, for example). Small ρ
makes the output smaller.

At this point, we do not know much, but let us assume that the state-feedback
input u(t) = −Kx(t) is used. Note that there is no a priori reason to expect that the
optimal input would be a state-feedback.

If u(t) = −Kx(t), then the integrand can be written as:

y2(t) + ρu2(t) = xT (t)[CT C + ρKT K]x(t)

Also, since

ẋ(t) = (A−BK)x(t) ⇒ x(t) = e(A−BK)tx0

where A − BK needs to be stable (otherwise the integrand would probably blow
up!) Hence,

J(Fx) = xT
0

[∫ ∞

0

e(A−BK)T t[CT C + ρKT K]e(A−BK)t dt

]
x0

= xT
0 Xx0,

where we have defined the integral to be the symmetric matrix X . It follows that the
cost function is quadratic in the initial condition x0.

Let us perform some matrix manipulations on X . These are slightly unmotivated
at this point, but you will later see how they arise.

[A−BK]T X + X[A−BK]

=
∫ ∞

0

(A−BK)T e(A−BK)T t[CT C + ρKT K]e(A−BK)t dt

+
∫ ∞

0

e(A−BK)T t[CT C + ρKT K]e(A−BK)t(A−BK) dt

=
∫ ∞

0

d

dt

(
e(A−BK)T t[CT C + ρKT K]e(A−BK)t

)
dt

= e(A−BK)T t[CT C + ρKT K]e(A−BK)t
∣∣∣
∞

t=0
(7.1)

= 0− [CT C + ρKT K] (7.2)

where we first used the fundamental theorem of calculus in Eq. 7.1, and then the
(assumption) that e(A+BF )t → 0 in Eq. 7.2.

It follows that

[A−BK]T X + X[A−BK] + CT C + ρKT K = 0

but this can also be written as:
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AT X +XA− 1
ρXBBT X +CT C +ρ(K− 1

ρBT X)T (K− 1
ρBT X) = 0 (7.3)

This is an equation that relates the feedback matrix K to the cost function J(Fx) =
xT

0 Xx0. No notion of optimality has been used so far. Note, however, that X must
be a positive matrix, because the integrand is always positive.

At this point, we choose a particular pair (K, X) related by this equation. In
particular, we are going to make the last quadratic term 0; that is K = 1

ρBT P and

AT P + PA− 1
ρPBBT P + CT C = 0 (7.4)

We’ve used a different letter (P instead of X) to remind you that this is the cost
of a particular choice of K. We will also use the following characterization of this
equation

[A− 1
ρBBT X]T P + P [A− 1

ρBBT ] + 1
ρPBBT P + CT C = 0

This is just Eq. 7.3 with the specific choices of X and K.
Let’s start checking a few things for this choice of K. First of all, we will see that

the resultant closed-loop system is stable. This will allay fears that the integrand is
blowing up.

Lemma 2. With P the positive semi-definite solution to Eq. 7.4, the matrix AK :=
A−BK = A− 1

ρBBT P is stable.

Proof. We prove this by contradiction. Suppose that AK is not stable; that is, there
exists an eigenvalue λ and eigenvector v such that

AKv = λv (7.5)

with Re λ ≥ 0. Note that, in general, eigenvalues and eigenvectors are complex num-
bers. Consider the Hermitian transpose of Eq. 7.5. A Hermitian transpose, denoted
by XH is just the regular transpose with complex conjugates. That is:

XH = [XT ] = (X̄)T .

Note that, if the matrix or vector X is real, then XH = XT . It follows that the
Hermitian transpose of Eq. 7.5 is

vHAT
K = λ̄vH (7.6)

Now, premultiplying equation Eq. 7.4 by vH and postmultiplying by v, yields:

vH
(
AT

KP + PAK + 1
ρPBBT P + CT C

)
v

= vHPv(λ + λ̄) + v
(
ρPBBT P + CT C

)
v

Consider the individual elements of this equation. First of all, since P is a positive
semidefinite matrix, vHPv ≥ 0, for any vector v. Also (λ + λ̄) = 2Re λ ≥ 0.



48 7 Linear quadratic control

Finally, note that vHCT Cv = ‖Cv‖2 ≥ 0 and ρv
(
PBBT P

)
v = ρ‖BT Pv‖2 ≥ 0.

It follows that all the elements are non-negative. Hence, the only way they can sum
to zero is if they are all zero. But then Cv = 0 and

Av = AKv + 1
ρBBT Pv = λv

But these two facts contradict observability, since:



C
CA

...
CAn−1


 v =




Cv
CAv

...
CAn−1v


 =




Cv
λCv

...
λn−1Cv


 = 0n×1

It must be that AK is stable. ut
OK, so far so good. Our system is stable. Now we need to show that this is, in

fact, the best we can do. We begin by considering the following function of time

V (t) = xT (t)Px(t)

Computing its derivative

V̇ (t) = ẋT (t)Px(t) + xT (t)Pẋ(t)

= [Ax(t) + Bu(t)]T Px(t) + xT (t)P [Ax(t) + Bu(t)]

=
[
xT (t) uT (t)

] [
AT P + PA PB

BT P 0

] [
x(t)
u(t)

]
.

Now, integrate left and right-hand sides from 0 to ∞. This leads to

V (∞)− V (0) =
∫ ∞

0

[
xT (t) uT (t)

] [
AT P + PA PB

BT P 0

] [
x(t)
u(t)

]
dt

= 0− xT
0 Px0

where all we have assumed is that the control u causes the state x to go to zero. Thus:
∫ ∞

0

[
xT (t) uT (t)

] [
AT P + PA PB

BT P 0

] [
x(t)
u(t)

]
dt + xT

0 Px0 = 0 (7.7)

Let’s now work with J :
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J(u) =
∫ ∞

0

[
xT (t) uT (t)

] [
Q 0
0 ρI

] [
x(t)
u(t)

]
dt

=
∫ ∞

0

[
xT (t) uT (t)

] [
AT P + PA + Q PB

BT P ρI

] [
x(t)
u(t)

]
dt + xT

0 Px0 (7.8)

=
∫ ∞

0

[
xT (t) uT (t)

] [ 1
ρPBBT P PB

BT P ρI

] [
x(t)
u(t)

]
dt + xT

0 Px0 (7.9)

=
∫ ∞

0

[ 1
ρxT (t)PB uT (t)

] [
BT P ρI
BT P ρI

] [
x(t)
u(t)

]
dt + xT

0 Px0 (7.10)

=
∫ ∞

0

[ 1
ρxT (t)PB uT (t)

] [
ρI ρI
ρI ρI

] [ 1
ρBT Px(t)

u(t)

]
dt + xT

0 Px0 (7.11)

= ρ

∫ ∞

0

(
1
ρxT (t)PB + uT (t)

)(
1
ρBT Px(t) + u(t)

)
dt + xT

0 Px0

= ρ

∫ ∞

0

‖u(t) + 1
ρBT Px(t)‖2 dt + xT

0 Px0

where: in line Eq. 7.8 we have added Eq. 7.7; in line Eq. 7.9 we used Eq. 7.4 in the
(1,1) term of the block matrix; in line Eq. 7.10 we transferred the terms 1

ρPB to the
xT term; in line Eq. 7.11 we transferred the terms 1

ρBT P to the x term.
Note that the cost function J(u) divides into two parts. The first — the integral

— is always non-negative. The second term is independent of u. It follows that the
best you can do is to set the first term equal to zero; but this is accomplished by the
choice

1
ρBT Px(t) + u(t) = 0 ⇒ u(t) = −Kx(t)

as we claimed.
At this point, we should really show that a solution to Eq. 7.4 does exists. I’m

going to skip this part of the theory as I think that it takes us a bit far afield. Instead,
it would be more instructive to look at an example.

Example 11. Consider the first order system:

ẋ(t) = ax(t) + u(t), y = x

and suppose that we want to minimize
∫∞
0

y2(t) + u2(t) dt. We will not specify a.
The theory says that the optimal control input u(t) = −Kx(t) where K = p and p
satisfies

0 = 2ap− p2 + 1 ⇒ p = a±
√

a2 + 1

Clearly, there are two solutions. We want to take the one that has p ≥ 0, and this is
p = a +

√
a2 + 1. The control input is then u = −kx where

k = p = a +
√

a2 + 1

placing the closed-loop pole at a− k = −√a2 + 1. ut
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7.2 Optimal Observers

We will not develop the theory too much, other than by using our intuition. Remem-
ber that we formulated the observer problem by noting that

(C,A) is observable ⇐⇒ (AT , CT ) is controllable

The problem of finding an observer gain L such that A+LC is stable is equivalent to
finding the gain KT such that AT −CT KT is stable. We might be tempted to define
an optimal observer gain by considering the optimal control gain for the problem
with AT and CT . This leads to another Algebraic Riccati Equation:

AQ + QAT − 1
ρQCT CQ + BBT = 0 (7.12)

and observer gain

L = 1
ρQCT . (7.13)

Note that we have just taken Eq. 7.4, and replaced A with AT ; B with CT and C
with BT .

It can be shown that this is indeed an optimal observation problem for a suitably
defined problem.

In particular, consider the system

ẋ(t) = Ax(t) + Bw(t)
y(t) = Cx(t) + v(t).

The two external signals: w(t) and v(t) are stochastic signals; that is, these are sig-
nals where at any point in time their value is a random variable.

We make the following assumptions about the probability distributions. First,
both signals are zero mean random processes. That is, for any t:

Ew(t) = 0, and Ev(t) = 0,

where E denotes mathematical expectation. Because both signals are zero mean, and
the system is linear, then the state and output will both be zero mean processes.
Furthermore, we assume that

Ew(t)w(τ) = δ(t− τ), Ev(t)v(τ) = ρδ(t− τ), and Ev(t)w(τ) = 0,

for any t and τ . The first two are equivalent to assuming that the two disturbances are
white noise processes. The third assumes that there is no correlation between them.

Now, we build a observer for this system:

˙̃x(t) = Ax̃(t) + L[y(t)− Cx̃(t)].

Notice that the observer does not include components from the external disturbances
as these are assumed to be unmeasurable. The estimation error is e(t) = x(t)− x̃(t)
and obeys the differential equation:
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ė(t) = (A− LC)e(t) + Bw(t) + Lv(t).

Thus:

e(t) = eALte0 +
∫ t

0

eAL(t−σ)
(
Bw(σ) + Lv(σ)

)
dσ, (7.14)

where we have defined AL = A−LC to keep the notation somewhat more manage-
able.

At this point, we can ask what is a reasonable cost function for the estimator.
Clearly, we want e(t) small. However, because the external disturbances are zero
mean, the integral will be as well. A more meaningful measure of the estimation
error, is then

lim
t→∞

E‖e(t)‖2.

Note that, because we are looking at the variance of the estimate as t ↑ ∞, then the
first term in Eq. 7.14 will go to zero, provided that AL is stable. Thus,

lim
t→∞

E‖e(t)‖2 = lim
t→∞

E‖ẽ(t)‖2

where

ẽ(t) =
∫ t

0

eAL(t−σ)
(
Bw(σ) + Lv(σ)

)
dσ.

Now we evaluate this, but we do so indirectly. Recall from linear algebra that

‖ẽ(t)‖2 = [ẽ(t)]T ẽ(t) = trace
(
ẽ(t)[ẽ(t)]T

)
.

Moreover,

ẽ(t)[ẽ(t)]T =
∫ t

0

∫ t

0

eAL[t−σ1][Bw(σ1) + Lv(σ1)][Bw(σ2) + Lv(σ2)]T eAT
L [t−σ2]dσ1dσ2.

Note that the term in the center of the integral equals:

Bw(σ1)w(σ2)BT + Bw(σ1)v(σ2)LT + Lv(σ1)w(σ2)BT + Lv(σ1)v(σ2)LT

(7.15)

When we take the mathematical expectation, because both the trace operation and
multiplication by the matrix exponential are linear, we get

E‖ẽ(t)‖2 = E trace
(
ẽ(t)[ẽ(t)]T

)

= trace
∫ t

0

∫ t

0

eAL[t−σ1] E [· · · ] eAT
L [t−σ2]dσ1dσ2.
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where the term omitted is Eq. 7.15. Thus

E [· · · ] =B E [w(σ1)w(σ2)]BT + B E [w(σ1)v(σ2)]LT

+ L E [v(σ1)w(σ2)]BT + L E [v(σ1)v(σ2)]LT

=[BBT + ρLLT ]δ(σ1 − σ2).

Replacing this into the cost function, and integrating with respect to σ2, leads to:

E‖ẽ(t)‖2 = trace
∫ t

0

∫ t

0

eAL[t−σ1][BBT + ρLLT ]δ(σ1 − σ2)eAT
L [t−σ2] dσ1dσ2

= trace
∫ t

0

eAL[t−σ1][BBT + ρLLT ]eAT
L [t−σ1] dσ1.

Now, define τ = t− σ1:

E‖ẽ(t)‖2 = trace
∫ t

0

eALτ [BBT + ρLLT ]eAT
Lτ dτ.

We are almost done. Note that, defining

Â = AT , B̂ = CT , Ĉ = BT , and K̂ = LT

then

lim
t→∞

E‖ẽ(t)‖2 = trace
∫ ∞

0

eÂT
Kt[ĈT Ĉ + ρK̂T K̂]eÂKt dt.

This is the integral that appears in the LQR problem (Eq. ??) under the assumption
that state-feedback control is used u = −Kx:

J(u = −K̂x) = xT
0

∫ ∞

0

eÂT
Kτ [ĈT Ĉ + ρK̂T K̂]eÂKτ dt x0.

Thus, the controller K̂ that minimizes this J(u) also minimizes

lim
t→∞

E‖ẽ(t)‖2.

What is this controller? It is given by

K̂ = − 1
ρ B̂T P̂

where P comes from the solution of the equation

0 = ÂT P̂ + P̂ Â + ĈT Ĉ − 1
ρ P̂ B̂B̂T P̂ .

In terms of the original data, this is simply Eq. 7.12 and Eq. 7.13 with Q = P̂ .

Example 12. Need a good one! ut
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7.3 Optimal controllers

We now consider the problem of designing an optimal controller C(s) for the state-
equation Eq. ??. This is the same problem that we considered in Section 7.1 except
that we assume that we do not have access to the state, so the state feedback control
of Section 7.1 can not be used. The really nice (and surprising) fact is that the optimal
controller is the following:

˙̂x = Ax̂ + Bu− L(y − Cx̂)
u = Fx

where F = − 1
ρBT P and L = −QCT and P and Q are the solutions to the AREs

Eq. 7.4 and Eq. 7.12. That is, the optimal controller is the observer controller where
the two components are optimal for the separate problems. This fact is now known
as the separation principle.

OK, let’s begin. I am going to define a signal

v = u− Fx

and consider the new system, by replacing the input u with the new input v:

ẋ = (A + BF )x + Bv

y = Cx

The state equation has as solution

x(t) = e(A+BF )tx0 +
∫ ∞

0

e(A+BF )(t−τ)Bv(τ) dτ

= e(A+BF )tx0 + (gv ∗ v)(t)

where gv(t) = e(A+BF )tB is the impulse response of the system which transfers the
input v to the state x. This system has transfer function

Gv(s) = (sI −A−BF )−1B

I can also write down the first term in the solution for x(t) as a convolution of gx(t) =
e(A+BF )t with the signal x0δ(t). Note that

Gx(s) = (sI −A−BF )−1

It follows that

X(s) = Gx(s)x0 + Gv(s)V (s)

Now, we want to minimize
∫ ∞

0

y2(t) + u2(t) dt =
1
2π

∫ ∞

−∞
|Y (jω)|2 + |U(jω)|2dω
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By Parceval’s theorem.
Note that:

|Y (jω)|2 + |U(jω)|2 = ‖
[
Y (jω)
U(jω)

]
‖2

Also,
[
Y (s)
U(s)

]
=

[
C
F

]
X(s) +

[
0
1

]
V (s)

=
[
C
F

]
Gx(s)x0 +

[
CGv(s)

1 + FGv(s)

]
V (s)

= Hx(s)x0 + Hv(s)V (s)

Hence

|Y (jω)|2 + |U(jω)|2 = xT
0 Hx(jω)HHx(jω)x0 + |v(jω)|2Hv(jω)HHv(jω) + 2xT

0 Hx(jω)HHv(jω)


