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Eigenvalue placement using state feedback

Earlier, we showed how to select the transfer function for a controller that can place
the closed-loop poles given the plant’s open-loop transfer function. One difficulty
of working with polynomials, however, is that the numerical accuracy can quickly
deteriorate as the order of the polynomial increases. State-space description of sys-
tems can lead to numerically superior algorithms. We know provide details on how
state-feedback controller can be used to place closed-loop eigenvalues.

5.1 State-feedback controllers

Suppose that we have a system described by the state-space representation:

ẋ(t) = Ax(t) + Bu(t), x(t) = x0

y(t) = Cx(t),

where the state-vector x(t) ∈ Rn and the input and output signals, u(t) and y(t)
respectively, are scalars. This means that the matrices satisfy the following dimen-
sionsal requirements:

A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n.

For a given input, the solution is given by:

x(t) = eAtx0 +
∫ t

0

eA(t−σ)Bu(σ) dσ.

In particular, if the input u(t) ≡ 0, the state

x(t) = eAtx0 (5.1)

will decay to zero asymptotically for any x0 if the eigenvalues of the matrix A all
have negative real parts.
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The response described by Eq. 5.1 represents an open-loop response. We can
also consider a closed-loop response under the assumption that the input is given by
state-feedback:

u(t) = −Kx(t).

Here K ∈ R1×n is a constant matrix. Under this control input the system is now
described by

ẋ(t) = [A−BK]x(t), x(t) = x0

y(t) = Cx(t),

and the state response is

x(t) = e[A−BK]tx0. (5.2)

As above, the state will decay to zero asymptotically if the eigenvalues of A − BK
all have negative real parts. This, of course, will be determined in part by the choice
of K. The state-feedback eigenvalue placement problem is: given A and B and a
monic nth order polynomial ∆d(s), find a K that makes

det(sI − [A−BK]) = ∆d(s)

In the next section we solve this problem.

5.2 Eigenvalue placement

We begin with a particular form of (A, B).

Lemma 1. Suppose that (A,B) is in controllable canonical form, and let

∆(s) = sn + dn−1s
n−1 + · · ·+ d0

for arbitrary di, i = 0, . . . , n− 1. Then there exists a

K =
[
k0 · · · kn−1

]

such that

det(sI − [A−BK]) = sn + dn−1s
n−1 + · · ·+ d0.

Proof. Write out the matrix A−BK and note that it has the same format as A with
the ai replaced with ai + ki. Because

det(sI −A) = sn + an−1s
n−1 + · · ·+ a0,

it follows that

det(sI −A + BK) = sn + (an−1 + kn−1)sn−1 + · · ·+ (a0 + k0).

Thus, if we pick the ki according to

ki = di − ai, i = 0, . . . , n− 1,

we get the desired result. ut
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Theorem 2. Suppose that (A,B) is controllable. There exists a K such that

det(sI − [A−BK]) = sn + dn−1s
n−1 + · · ·+ d0

for arbitrary di, i = 0, . . . , n− 1.

Proof. From Lemma 4 , if (A,B) is in controllable canonical form:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 1
−a0 −a1 −a2 · · · −an−1




, B =




0
0
...
0
1




the matrix

K =
[
k0 · · · kn−1

]

does the trick, if ki = di − ai, for i = 0, . . . , n− 1.
Now, suppose that the pair is not in controllable canonical form. We will show

that there exists an invertible matrix T such that

TAT−1 = Ā, TB = B̄

where Ā and B̄ are in CCF.
Define

C =
[
An−1B An−2B · · · AB B

]
and C̄ =

[
Ān−1B̄ Ān−2B̄ · · · ĀB̄ B̄

]
.

Because both (A,B) and (Ā, B̄) are controllable, the matrices C and C̄ are invert-
ible (changing the order of the columns does not change the rank). Moreover, as in
Lemma 4, the second of these matrices has the form

C̄ =




1 0 · · · · · · · · · 0
? 1 0 · · · · · · 0
...

. . . . . . . . . . . .
...

? ? ? ? 1 0
? ? ? ? ? 1




where ? corresponds to elements whose exact values are not needed.
The claim is that the matrix T = C̄C−1 puts the matrix in the correct format. To

show this, we need to show that

TB = B̄ ⇐⇒ C̄C−1B = B̄ (5.3)

and

TAT−1 = Ā ⇐⇒ C−1AC = C̄−1ĀC̄−1 (5.4)
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For Eq. 5.3, note that

C−1B =




0
0
...
1


 ,

because C−1C = I and B is the last column of C; thus, the product C−1B gives the
last column of the identity.

Now,

C̄C−1B = C̄




0
0
...
1


 =




0
...
0
1


 = B̄,

by the form of C̄.
We now show Eq. 5.4. First of all, note that

AC =
[
AnB An−1B · · · A2B AB

]

=
[−a0B − a1AB − · · · − an−1A

n−1B An−1B An−2B · · · AB
]

where the last line came from application of the Cayley-Hamilton theorem.1

Now, note that the matrix AB is the second last column of C; that A2B is the
third last column of C, etc. Thus,

C−1
[
An−1B An−2B · · · AB

]
=




0 0 · · · 0

1 0
... 0

0 1
... 0

...
...

...
...

0 0 · · · 1




.

Also, −a0B − a1AB − · · · − an−1A
n−1B is

−a0 × [nth col. of C]− a1 × [(n− 1)st col. of C]− · · · − an−1 × [1st of C]
and, therefore,

C−1
(−a0B − a1AB − · · · − an−1A

n−1B
)

=




−an−1

−an−2

...
−a0


 .

1 That is, if det(sI−A) = sn+an−1s
n−1+· · ·+a0, then An+an−1S

n−1+· · ·+a0I = 0,
or An = −an−1S

n−1 − · · · − a0I .
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Thus, the left-hand-side of Eq. 5.4 is

C−1AC =




−an−1 0 0 · · · 0

−an−2 1 0
... 0

... 0 1
... 0

−a1

...
...

...
...

−a0 0 0 · · · 1




.

However, since the characteristic polynomial of A and Ā are the same, following the
exact same procedure leads to

C̄−1ĀC̄ =




−an−1 0 0 · · · 0

−an−2 1 0
... 0

... 0 1
... 0

−a1

...
...

...
...

−a0 0 0 · · · 1




.

which confirms Eq. 5.4.
Note that, if K̄ is the state feedback matrix that makes

det(sI − Ā + B̄K̄) = sn + dn−1s
n−1 + · · ·+ d0,

then K = K̄T makes

det(sI −A + BK) = det(sT−1T − [T−1ĀT ] + [T−1B̄][K̄T ])

= det(T−1[sI − Ā + B̄K̄]T )

= det T−1 det(sI − Ā + B̄K̄) det T

= det(sI − Ā + B̄K̄)

= sn + dn−1s
n−1 + · · ·+ d0,

as required.

Remark 2. This formula for the state feedback matrix is known as “Ackermann’s
formula.” The Matlab commands acker and place find the required K for a given
(A,B) and a given set of required closed-loop eigenvalues.

5.3 Tracking in state-space systems

Tracking external references in the state-space configuation is not much different
from the case of polynomial systems. Once again, the idea is to augment the plant
with a model of the external signal.
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In what follows, we are considering systems of the form

ẋ = Ax + Bu (5.5)
y = Cx (5.6)

where we assume that A ∈ Rn×n. We also consider an external reference r. Our
goal is for the tracking error

e(t) = r(t)− y(t)

to go to zero asymptotically for a predetermined r. We will first deal with steps and
then look at more general inputs.

5.3.1 Tracking steps

In this case, the external signal

r(t) = 1, t ≥ 0.

We want this to go to zero asymptotically. One way of ensuring that is to define a
new state:

xn+1(t) =
∫ t

0

e(t) dt;

equivalently,

ẋn+1 = e(t) = r(t)− y(t).

In particular, if the system reaches steady-state, the derivatives of all states (including
xn+1) go to zero. The only way for this to happen is for e(t) → 0.

It follows that we need to ensure that all the states reach equilibrium. We do this
by defining an aumented state

z(t) =




x1

...
xn





x

xn+1




Writing the state space description:

ż =
[

ẋ
ẋn+1

]

=
[
Ax + Bu
r − Cx

]

=
[

A 0
−C 0

]

︸ ︷︷ ︸
Ā

[
x

xn+1

]

︸ ︷︷ ︸
z

+
[
B
0

]

︸︷︷︸
B̄

u +
[
0
1

]

︸︷︷︸
B̂

r.
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Thus, the augmented system has the description

ż = Āz + B̄u + B̂r.

Notice that there are two inputs: the control input u, and the external input r. To
stabilize the system, we seek a

K̄ =
[
K kI

]

such that the state-feedback input

u = −K̄z

can make the eigenvalues of the closed-loop system matrix

ĀK = Ā− B̄K̄

stable. In fact, if (Ā, B̄) is controllable, then the eigenvalues of ÂK can be set ar-
bitrarily. Note, however, that just because (A,B) is controllable does not imply that
(Ā, B̄) is controllable.

Example 10. Consider the transfer function

G(s) =
s

(s + 1)2
.

It has a controllable canonical state space representation

A =
[

0 1
−1 −2

]
, B =

[
0
1

]
, and C =

[
0 1

]
.

Clearly, this is (A, B) is controllable since the representation is in CCF. However,
the augmented system has:

Ā =
[

A 0
−C 0

]
=




0 1 0
−1 −2 0
0 −1 0


 ,

and

B̄ =
[
B
0

]
=




0
1
0


 .

The controllability matrix for this system is

C̄ =




B̄
ĀB̄
Ā2B̄


 =




0 1 −2
1 −2 3
0 −1 2


 ,

which is of rank 2 (the third column equals minus the first minus two times the
second) and hence the augmented system is not controllable. ut
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It is relatively easy to see why augmenting the system with an integrator renders
the state-space system uncontrollable. The open-loop plant has a zero at s = 0.
Adding an integrator, that is, a pole at zero induces a pole-zero cancellation. Hence,
the augmented plant’s numerator and denominator are no longer coprime. By the
results of the previous chapter, we can expect that the closed-loop poles can not be
set arbitrarily.

Using the state-feedback controller, the system will approach a steady-state,
given by

ż = 0 = (Ā− B̄K̄)z + B̂r ⇒ z = −(Ā− B̄K̄)−1B̂r.

We have taken the inverse of Ā− B̄K̄. We know that this inverse exists, because the
matrix is stable. This means that the eigenvalues all have negative real part eigenval-
ues, and hence can not be at zero.

Suppose that

(Ā− B̄K̄)−1 =
[
Φ11 Φ12

Φ21 Φ22

]
.

It follows that

I = (Ā− B̄K̄)
[
Φ11 Φ12

Φ21 Φ22

]

=
[
A−BK0 −Bk1

−C 0

] [
Φ11 Φ12

Φ21 Φ22

]

In particular, from the (2,2) element of this product:

−CΦ12 = 1.

Hence:

y =
[
C 0

]
z

= − [
C 0

]
(Ā− B̄K̄)−1B̂r

= − [
C 0

] [
Φ11 Φ12

Φ21 Φ22

] [
0
1

]
r

= −CΦ12r

= r. (5.7)

Thus, the system is tracking the constant reference r.

5.3.2 Tracking sinusoids

If you are not paying close attention, you might think that the argument presented
above works for any reference input. After all, Eq. 5.7 says that the output y equals
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the reference r, and we did not seem to use anywhere the fact that the reference was
a step.

Unfortunately, if you did think this, you would be wrong. The problem is that, to
arrive at Eq. 5.7, we needed to assume that the system reached an equilibrium (i.e.
the derivatives of the states were zero). But this will not be the case in general.

The procedure for getting there is similar when the references are signals other
than steps. However, the argument as to why steady-state tracking is achieved is
somewhat more complicated. Notice that when the reference is a step, we define the
state

ẋn+1 = e(t).

In the Laplace transform domain, this is

Xn+1(s) =
1
s
E(s).

To track a sinusoid of frequency ω0, we once again augment the state of the
system, but we do so with multiple states. In particular, we define states:

d
dt

[
xn+1

xn+2

]
=

[
xn+2

−ω2
0xn+1 + e

]

=
[

0 1
−ω2

0 0

] [
xn+1

xn+2

]
+

[
0

r − y

]

In the Laplace transform domain, this is equivalent to

Xn+1(s) =
1

s2 + ω2
0

E(s).

Now the procedure is similar. We define a new state z ∈ Rn+2 according to:

z(t) =




x[
xn+1

xn+2

]



and state-space description

ż =




ẋ
ẋn+1

ẋn+2




=




Ax + Bu
xn+2

−ω2
0xn+1 + r − Cx




=




A 0 0
0 0 1
−C −ω2

0 0




︸ ︷︷ ︸
Ā




x
xn+1

xn+2




︸ ︷︷ ︸
z

+




B
0
0




︸ ︷︷ ︸
B̄

u +



0
0
1




︸︷︷︸
B̂

r.
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Once again, the augmented system has the description

ż = Āz + B̄u + B̂r.

Now, if (Ā, B̄) is controllable, then there exists a

K̄ =
[
K k1 k2

]

such that

ĀK = Ā− B̄K̄

is stable.
The error is

e = r − y = r − Cx

Thus, the whole state-space description of the system, using the external input r and
the error e as the external output is

ż = ĀKz + B̂r

e = C̄z + r

with transfer function

E(s)
R(s)

= C̄(sI − ĀK)−1B̂ + 1.

Once again, we can write

(sI − ĀK)−1 =




Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33


 ;

then

E(s)
R(s)

= C̄(sI − ĀK)−1B̂ + 1

=
[−C 0 0

]



Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33







0
0
1


 + 1

= 1− CΦ13.

From the (3,3) element of the product

(sI − ĀK)Φ = I ⇒



sI −A 0 0
0 s −1
C ω2

0 s







Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33


 =



1 0 0
0 1 0
0 0 1



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we get:

CΦ13 + ω2
0Φ23 + sΦ33 = 1. (5.8)

Moreover, from the (2,3) element of this product:

sΦ23 − Φ33 = 0.

Substituting this into Eq. 5.8 yields:

CΦ13 = 1− (ω2
0 + s2)Φ23.

Hence,

E(s)
R(s)

= C̄(sI − ĀK)−1B̂ + 1

= −CΦ13 + 1

= (ω2
0 + s2)Φ23 = Γ (s).

Finally, we know that for a stable transfer function Γ (s), a sinusoidal input leads
to a steady-state sinusoidal output, with magnitude

|Γ (jω0)| = |Γ (s)|s=jω0
= (ω2

0 + s2)Φ23

∣∣
s=jω0

= 0.

This shows that, in steady-state, the error goes to zero asymptotically.


