

MOS Transistors Models

Andreas G. Andreou Pedro Julian

Electrical and Computer Engineering Johns Hopkins University

http://andreoulab.net

The MOS transistor – Levels of Abstraction-

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.

MOS fluidic analogy: a conceptual model (I)

From Mead and Conway

MOS Capacitor

MOS Transistor

MOS Transistor Varia Bias

NMOS as a switch/resistor: a conceptual model (II)

not a good one

PMOS as a switch/resistor: a conceptual model (III)

What are the physical values for 0 and 1

chip/logic voltages (blue line)

MOS switch model relation to I-V characteristics (I)

With digital input on gate the device is either ON or OFF

MOS switch model relation to I-V characteristics (II)

1. An intuitive and conceptual abstraction of a complex physical process

2. A mathematical abstraction of a complex physical process that is capable of predicting experimental observations.

Conduction –ohmic- vs saturation

Device operation characterized by the form of the current as a function of the bias voltage between the DRAIN and the source terminals (Vds)

Above threshold vs sub-threshold behaviour

Device operation characterized by the form of the current as a function of the bias voltage between the gate and the source terminals (Vgs)

MOS transistor mathematical model

Mathematical model -above threshold-

$$If \quad V_{GS} < 0$$
$$I_{DS} = 0$$

If
$$V_{DS} > V_{GS} - V_{TO}$$

Saturation

$$I_{DS} = \left(\frac{W}{L}\right) \left(\frac{UO}{2}\right) \frac{\varepsilon_0 \varepsilon_r}{TOX} \left(V_{GS} - V_T\right)^2$$

If
$$V_{DS} < V_{GS} - V_{TO}$$

Ohmic

$$I_{DS} = \left(\frac{W}{L}\right) UO \frac{\varepsilon_0 \varepsilon_r}{TOX} \left(\left(V_{GS} - V_T\right) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

 $\epsilon_0\!=8.85\;10^{\text{-12}}\,\text{F/m}$ is the absolute permittivity

 ε_r = relative permittivity, equal to 3.9 in the case of SiO2 (no unit)

Mos Model 1 parameters			
Parameter	Definition	Typical Value 0.12µm	
		NMOS	PMOS
VTO	Theshold voltage	0.4V	-0.4V
U0	Carrier mobility	0.06m ² /V-s	0.02m ² /V-s
TOX	Gate oxide thickness	2nm	2nm
PHI	Surface potential at strong inversion	0.3V	0.3V
GAMMA	Bulk threshold parameter	$0.4 V^{0.5}$	$0.4 V^{0.5}$
W	MOS channel width	1µm	1µm
L	MOS channel length	0.12µm	0.12µm

$$V_T = V_{TO} + \gamma \left(\sqrt{\phi - V_{BS}} - \sqrt{\phi} \right)$$

Model parameters

Above threshold vs sub-threshold behaviour

Device operation characterized by the form of the current as a function of the bias voltage between the gate and the source terminals (Vgs)

Mathematical model –subthreshold-

$$I_{D} \equiv I_{DS} = S I_{n0} \exp\left(\frac{\kappa_{n} V_{GB}}{V_{t}}\right) \left[\exp\left(\frac{-V_{SB}}{V_{t}}\right) - \exp\left(\frac{-V_{DB}}{V_{t}}\right)\right]$$

$$I_{D} \equiv I_{SD} = S I_{p0} \exp\left(\frac{-\kappa_{p} V_{GB}}{V_{t}}\right) \left[\exp\left(\frac{V_{SB}}{V_{t}}\right) - \exp\left(\frac{V_{DB}}{V_{t}}\right)\right]$$

$$V_{t} \equiv \frac{kT}{q} \qquad \kappa \equiv \frac{1}{\eta} \equiv \frac{C_{ox}}{C_{ox} + C_{dep}} \qquad S \equiv \frac{W}{L}$$

$$I_{p0} = 0.5 \times 10^{-18} A$$
$$I_{n0} = 0.9 \times 10^{-18} A$$
$$\kappa = 0.7$$
$$V_{t} = 0.26 Volts$$

Parameters:

Operating current for an NMOS

- Operates on one of two curves
- on on
 - Looks like a current source initially (high V_{ds)}
 - Looks like a resistor later (low V_{ds})
- off
 - Open circuit always

Operating current for a PMOS

- Same behavior as NMOS
 - Open circuit when
 off
 - Current source or resistor when on

Computer Aided Design Tools

