Complex CMOS Gates

Andreas G. Andreou Pedro Julian

Electrical and Computer Engineering Johns Hopkins University

http://andreoulab.net

Levels of Abstraction –MOS switch and Inverter-

Out = NOT (In)

 $Out = \sim (In)$

Equation

In	Out
0	1
1	0
Х	Х

Truth Table

LOGICAL PHYSICAL

v, (v)

Important rules

- NFET's pull down, PFET's pull up
- Pull up and pull down NOT at the same time
- Output always connected to VDD or GND

NAND Gate

NAND2

NAND Gate

• Three inputs

NOR Gate

 $\mathbf{D} = \overline{\mathbf{X} + \mathbf{Y}}_{(\mathbf{d})}$

NOR2

Multiplexer

 $\mathbf{D} = \overline{\mathbf{X} \cdot \overline{\mathbf{S}} + \mathbf{Y} \cdot \mathbf{S}}_{(\mathbf{d})}$

Gate Construction

- Truth table method
- Complementary structures

Truth table method

Truth table method

• Result

- Disadvantage: n inputs -> 2^n entries. $2^n \ge n$ FETs
- We need inverters to generate \overline{x} and \overline{y}

Truth table method

• NAND gate

Complementary structures

- Build the PUP from the PDN or viceversa
- Replace
 - PMOS with NMOS (and viceversa)
 - Parallel branches with series branches (and viceversa)
- Signals going to inputs: unchanged

Complementary structures

Complementary structures

$$\mathbf{D} = \overline{(\mathbf{X} + \mathbf{Y}) \cdot \mathbf{Z}}$$

Boolean equation method (I)

• Any network equivalent to a single FET + Boolean expression

Boolean equation method (II)

• Any network equivalent to a single FET + Boolean expression

Boolean equation method (I)

• Reduction

• Expansion

Boolean equation method (II)

