
988 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 5, MAY 2004

A Scalable and Programmable Simplicial CNN
Digital Pixel Processor Architecture
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Abstract—We propose a programmable architecture for a single
instruction multiple data image processor that has its foundation
on the mathematical framework of a simplicial cellular neural
networks. We develop instruction primitives for basic image
processing operations and show examples of processing binary
and gray scale images. Fabricated in deep submicron CMOS
technologies, the complexity of the digital circuits and wiring in
each cell is commensurate with pixel level processing.

Index Terms—Cellular neural networks (CNNs), CMOS imager
sensor, digital pixel, image processing, pixel level processing, vision
chips.

I. INTRODUCTION

THE STILL and video camera community is seeing a re-
naissance as CMOS imagers are replacing charge coupled

devices (CCD) sensors [1]. Fabricating sensor arrays in CMOS
has the potential of incorporating processing beyond amplifica-
tion on the chip and even at the pixel level much like it is done
in human and animal eyes. A number of CMOS chips inspired
by the function of biological vision systems have been reported
in the literature [2].

The cellular nonlinear/neural networks (CNN) approach,
introduced by Chua [3] abstracts biology at a high level. In
CNN architectures, information processing is implemented
through the evolution of a continuous-time nonlinear dynamical
network with nearest neighborhood connectivity. The CNN
universal machine (CNN-UM) is one of the earliest systems
[4] that implemented CNN programmable functionality on
a chip, including a programming language, compilers and
simulators to aid the design of applications. Another example
of CNN hardware implementation is the work by Nan et al.
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[5] and Dominguez-Castro et al. [6], which have merged a
CNN-UM type processor and an imager front-end on a single
chip that acquires and processes images in a parallel fashion.
The operation mode of the chip is still conventional in the CNN
sense, i.e., it relies on the steady state evolution of an analog
dynamical network. However, unlike the original CNN-UM
architecture, the system has a digital interface with an on chip
7-bit analog–digital (A/D) and digital–analog (D/A) converters
improving the programmability and simplifying the interface
to digital computers. The silicon retina architectures of Mead
[7], Boahen and Andreou [8], Boahen, [9], Delbruck and Mead
[10], and Culurciello and Etienne-Cummings [11] abstract
biology at a lower level. Koch [12], Etienne-Cummings et al.
[13], and Andreou and Boahen [14] have also implemented
focal plane processing architectures that include processing
beyond gain control and spatio-temporal filtering. Most of
the above architectures have limited programmability. More
recent work in address event representation (AER) based
vision systems has yielded architectures and implementation of
systems that are fully programmable in functionality [15], [16].

On the digital side, recent work has demonstrated the pos-
sibility of obtaining good quality A/D conversion inside each
pixel. El Gamal et al. [17] points out that digital on-chip pixel
processing promises many significant advantages while analog
processing, suffers from poor scaling properties such as the re-
duction of the operating voltage and the increase of leakage cur-
rent. The megapixel imager proposed in [18] has an A/D con-
verter in every pixel, and it is able to acquire images at up to
10 000 frames per second. In other words, once every 100 s,
every pixel contains a digital value that encodes the light inten-
sity in 8 bits. Such general-purpose imagers whose goal is the
precise restoration of information are, on the other hand, power
hungry and consume many orders of magnitude the power that
biological systems and to a certain extend silicon models of bi-
ological function do. On the other hand, if power dissipation is
not a concern, and there is a need for a general purpose compu-
tational sensor then digital pixel and processing imagers appear
to be more attractive.

Digital approaches to computational vision processing
units implement single instruction multiple data (SIMD)
architectures that execute the same instruction on the entire
array. The Programmable Versatile Large Size Artificial Retina
(PVLSAR) 2.2, developed by Paillet et al. [19], contains a
50-transistor operational unit inside each pixel. Image pro-
cessing on this chip is limited to the combination of very
simple arithmetic and logic operations, most of them one bit
long. The system is also capable of acquiring and processing
4-bit grayscale images and it can perform node operations
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Fig. 1. (a) S-CNN cell structure in 2-D. (b) Array of cells in a sphere of influence.

with any combination of neighbors by employing an internal
communication network based on circular shift registers.

In this paper, we propose a programmable architecture for a
SIMD image processor that is based on the mathematical frame-
work of simplicial CNNs (S-CNN). The S-CNN was originally
introduced in [20] and contains in its core a simplicial piece-
wise-linear (PWL) function [21]. The S-CNN architecture is
able to perform any arbitrary logic function: it can process gray
or binary images and allows for complex image processing tasks
to be programmed in an intuitive way.

The paper is organized as follows. In Section II, we introduce
the basic architecture of a S-CNN, and the core processing func-
tional blocks are presented in Section III. We develop instruction
primitives for basic image processing functions and show exam-
ples of processing binary and gray scale images in Section IV.
A brief discussion and conclusions follow in Section V.

II. S-CNN BASICS

A CNN is a parallel computational structure defined on an
array of interconnected cells. The array is homogeneous re-
sulting in a displacement invariant lattice with local intercon-
nects. The computation is based on the processing capabilities
available at each cell; typically, a dynamical system with a local
state, inputs and outputs.

The cell operates on the input and the local state of a par-
ticular set of neighbor cells (the neighborhood in general con-
tains the cell itself) called sphere of influence (see Fig. 1). In
an S-CNN, the differential/difference equation that governs the
cell dynamics, utilizes a piecewise-linear function defined over

a simplicial partition of the domain [20]. In this paper, we will
restrict our attention to discrete-time S-CNN.

For arrays in two dimensions (2-D), each cell is described by
the CNN equation ([3], [22])

(1)
where is a PWL function; is
the output function;1 is the vector of outputs
corresponding to cells in the sphere of influence ;

is the vector of inputs corresponding to cells in the sphere of
influence ; is the state of the cell; and

are the total number of rows and columns, respectively; is
the number of cells in the sphere of influence , and
is the dimension of the input/output (I/O) space.

The sphere of influence contains the cells that share input
and state values with cell . In this paper, we will employ a
nine-cell sphere of influence, i.e.,

that results in nine-dimensional input and output vectors (
). The resulting vector expressions are

1In the standard CNN nomenclature, the output function is generally defined
as G(x ) = (1=2) (jx + 1j � jx � 1j).
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Fig. 2. (a) Simplicial PWL function. (b) Domain in < with � = 1.

where , , and
.

Function is PWL, and it is defined over a simplicially sub-
divided domain of the CNN I/O space, as can be seen from (1). A
simplicial domain is a domain subdivided into simplices, where
a simplex is an –dimensional generalization of a triangle in

or a pyramid in (Fig. 2). In every simplex, the descrip-
tive function is affine linear and can be represented by a hy-
perplane. A simplex is described by the convex combination of

vertices. The vertices are the domain points defined by
the partition intersections of zero dimension . If the partition
has a grid step then, the set of vertices is

(2)

Restricting the grid to the case , the vertices components
can only take two possible values: zero or one; then, the set of
simplices is

(3)

It was shown by Julian et al. [23] that the space of PWL func-
tions defined over a simplicial partition is a Hilbert space, which
in our case, has a dimension . We will use the basis pro-
posed in [21], where the descriptive function is represented in
the form of

where is a point in the I/O space, is a co-
efficient vector, and is a vector of basis func-
tions, i.e., . One of the advantage
in representing the vectors in this space is that all elements

have only one value different from zero over
the set of vertices, i.e.,

if
if

The information needed to represent the function is given by
the values of the vertices (which coincide with the coefficients

) that can be stored in a table indexed by the binary number
associated to the vertex coordinates.

A. S-CNN Computation

The S-CNN computes by solving the dynamical system (1).
This necessitates that function must be calculated in each cell
for the system to evolve from time to time . We calculate
the function using the information stored in the indexed table
and an algorithm to interpolate the final value. The procedures
consists of three steps.

Step 1) Given an input vector the simplex containing it is
first identified. This simplex is described by the set
of vertices .

Step 2) The vector consisting of the convex combination of
the vertices is then calculated. This corresponds
to finding the coefficients of

where , and the
.

Step 3) Given the vertices in and the convex combina-
tion weights , the values of the function at the
vertices are retrieved, i.e., , and
weighted to obtain the function value

An elegant way to implement the algorithm outlined above
was proposed by Chien and Kuh in [24]. A modified version
amenable to mixed analog/digital signal processing was de-
scribed in [25].

In Section III, we propose an alternative architecture to map
the algorithm into hardware, shown in Fig. 3.

III. DIGITAL ARCHITECTURE

As in previous implementations, the algorithm performs the
calculations in a given time step. The digital inputs are sup-
plied to a group of digital comparators and compared against
a digital ramp. The output of each comparator is encoded in
time by a 1-bit digital signal. The individual components ,

are grouped in a vector that identifies the dif-
ferent vertices of the simplex containing as the ramp goes
through one cycle. The weights of the convex combination cor-
respond to the amount of time each vertex appears at the com-
parator outputs. Note that the group of comparators calculate
the convex decomposition described in the first two steps of the
algorithm. The memory and the counter perform the third step.
While the comparators produce the vertex number (used to ad-
dress the memory) the corresponding value ( ) is added in the
counter. The count is updated in every ramp step so that at the
end of the ramp cycle the value of the function is stored in the
counter. This functionality is replicated in each cell, and hence
the computation is done in parallel.

We assume that the processor will be implemented as an
array of cells, so that all computations can be done in parallel.
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Fig. 3. Calculation of the function F using digital hardware.

Fig. 4. S-CNN processor architecture. The I/O Interface contains the circuits
to interact with the periphery of the chip. The I/O interface allows the readout
of the whole array at every frame. It also incorporates the read-write circuits for
accessing the memory where the functions and state machine code are stored.

Taking advantage of scaling in deep submicron CMOS tech-
nologies (90 nm and below), the S-CNN processor can even
be included in the pixel circuit. The resulting structure could
be a sensor array with local digital processing, capable of real
time still image or video processing. The S-CNN processor
consists basically of three parts: an array of basic cells, and
the state machine unit as well as the I/O interface unit in
the periphery. Fig. 4 shows a block diagram of the S-CNN
processor architecture.

We now proceed to discuss the details of the basic cell in
the array aimed at an implementation where wiring complexity

is traded off to local storage by removing individual program
storage in each cell (see Fig. 3) and by employing a single
memory for the entire array. This architectural decision has two
distinct advantages: First, the circuit complexity and the size of
every cell is reduced and second, it offers more flexibility for
storing and changing on the fly the S-CNN programs. To dis-
tribute the instruction, the memory content is wired through a
parallel 9 bit global bus to all cells. This bus is used to broad-
cast the instruction (memory content) once at each ramp step,
therefore adding an internal cycle, called evaluation cycle, at
each step of the digital ramp.

Each cell in the array has the necessary circuits to:

1) acquire and convert the image into digital data (Photo-
ADC);

2) encode the data and communicate to the neighbors (Local-
Comm);

3) compute the state (LocalComp);
4) communicate with the periphery to output results (CellIn-

Out).
These functions are done by the blocks depicted in (Fig. 5) as

follows.

1) PhotoADC: The basis for this functional block is the dig-
ital pixel design of [18]. The circuits in this block include
the photosensitive element and associated A/D conver-
sion. Photo generated current is integrated on a capacitor
to give an output voltage. The voltage is sampled, held,
and compared to an external analog ramp that runs syn-
chronously with a digital ramp. When the ramp voltage
is greater than the photodiode voltage, the comparator
changes its output and the value of the digital ramp is
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Fig. 5. S-CNN processor block diagram.

latched. In this way, the A/D conversion is performed and
the input digital value is stored in a register file.

2) LocalComm: The encoder block contains the circuitry
required for the time encoding of the input, the time en-
coding of the state values and their communication with
the neighboring cells. Every signal is encoded with one
bit, in such a way that it is zero when the input (state,
respectively) is greater than the cycle ramp and one oth-
erwise. The encoders are two digital comparators. They
compare the values of both, the digital input and the
digital state , with the digital ramp. As a result, two sig-
nals are obtained that are shared with all neighbors in
the sphere of influence. Every cell collects nine pairs of
these encoded signals, one per neighbor. The wiring for
the digital ramp is shared with the wiring for the digital
ramp required in the PhotoADC block. This has impor-
tant ramifications in the power dissipation for the system
(see discussion later in this section).

3) LocalComp: The local processing block groups the vec-
tors corresponding to the inputs and states of the cells in
the sphere of influence in a digital time varying word .
At each step of the cycle ramp the value of function
at the vertex indicated by is integrated. At the end of
the ramp cycle, the integration counter holds the new state
value . These tasks are done with two digital compara-
tors. The first one compares with the evaluation cycle
ramp and detects when the broadcasted function corre-
sponds to the vertex in (Fig. 6). This comparator trig-
gers a latch signal to a flip-flop that holds the value of the
function. The value stored in the flip-flop triggers an in-
crement of a counter at the end of the evaluation cycle.

4) CellInOut: The input/output block include the circuits
necessary to enable the reading or writing of the cell state
from the periphery of the chip.

Fig. 6. Block diagram of the cell function evaluation.

The state machine contains the circuits responsible of sched-
uling the time and the execution order of the different events:
the integration time, the conversion time, the I/O time and the
ramp cycle with its internal evaluation cycle. It is also respon-
sible of broadcasting the digital ramp for the analog conversion,
the ramp cycle and the evaluation cycle. It can execute multiple
S-CNN cycles in one frame and select the function from dif-
ferent memories. This can be defined by the user through pro-
gramming the state-machine code. As every instruction operates
over the whole cell array, the architecture can be also classified
as a SIMD processor.

IV. S-CNN PROGRAMMING

In this section, we present the basic programming primitives
for the proposed S-CNN architecture. We will show that tasks
can be programmed in a very intuitive way by writing down a
truth table. This is an important advantage over analog imple-
mentation of CNN architectures, where, in most cases, the de-
sign of the differential equation for a given task is the result of
a trial and error process or an iterative algorithm.

In the architecture presented in this paper to program an ap-
plication, we only need to identify the relation between a cell
state at and the actual inputs and states of those cells
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Fig. 7. (a) Input image. (b) Output result from the S-CNN erosion program.

in its sphere of influence at . The domain of this functional
mapping is, in general, the input output space of the S-CNN. The
function is completely defined by the values of the function
at the set of points called vertices. To identify the function, we
enumerate all the possible vertices or all possible combinations
of and that belong to a vertex and for each one we assign
the desired output state of the cell. Example 1 shows a simple
case of a program that can be completed in one step. More com-
plex programs can be written using a combination of one-step
programs and/or loading special initial states or border condi-
tions. However, in all cases, the programming methodology is
the same and the programs are designed based on the primi-
tives for the one-step program necessary to arrive to the desired
steady state after a number of steps. Example 2 shows an ex-
ample of a multi-instruction program.

Example 1: Find the function for the S-CNN program ero-
sion (Fig. 7). We first note that this necessitates feedforward
only processing, that only depends on the input image. There-
fore, the number of vertices with different values is reduced to
512 ( ). If the cell input is zero, then, the state will also be
zero, i.e., if . For the remaining 256 pos-
sible input patterns, i.e., with , the new state will be one
only when all the neighbors are one, i.e., if ,
for all . Combining the two cases, a
closed-form expression for the function is obtained

Example 2: Find function for the S-CNN program hole-
filling (Fig. 8).2 In this application, we use the erosion S-CNN

2Note that as circles plotted using single point lines include diagonal line
segments as boundaries, and thus do not qualify as closed figures when a 3� 3
neighborhood is considered.

Fig. 8. (a) Input image. (b) Initial state. (c) State at k = 1. (d) State at k = 10;
…. f.

program formulated in Example 1. The initial state is loaded
with ones except for the borders that are set to zero. Then, a one
step program that produces an erosion of the state array and adds
the input is iteratively applied. Note that the erosion eliminates
layers of the state of the image, advancing one pixel per step.
If the input image is empty, the state will converge to an empty
image after a number of iterations that equals to the number of
pixels in the largest dimension of the image. If there is a closed
figure in the input, when the “erasing wave” reaches it, the pro-
gram overwrites the contour by adding the input. Therefore, the
closed figure in the state plane remains filled. The S-CNN func-
tion of the erosion and overlap can be combined in one simple
program having the following function :

Example 3: Find the function for the S-CNN program
edge detection. This function is feedforward, and if the cell input
value is zero it will remain as zero. If the value of the cell is one,
it will remain as one only if at least one neighbor is zero. Even
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Fig. 9. (a) Input image. (b) Output produced by the S-CNN edge detection
program.

though the coefficients are programmed using 1 bit, the archi-
tecture can process grayscale images (Fig. 9) (see [25])

A. S-CNN Library

In this section, we list a library of standard functions that can
be used to perform image processing tasks. The functions can
be combined in one S-CNN cycle or pipelined to accomplish
the desired task in several steps. In this library the function is

described by the combination of the input mapping and
state mapping . Variables and correspond to
the particular boundary conditions of the state and input, respec-
tively, and represents the initial state (only specified when
necessary).

• Edge Detection

• Corner Detection

• Horizontal Translation

Right

Left

• Vertical Translation

Up

Down

• Diagonal Translation

Up Right

Up Left

Down Right

Down Left

• Point Extraction

• Point Removal

Identity

• Logic Not

• Directional Edge Detection

Right

Left

Up

Down
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• Erosion

• Dilation

• Shadow Projection

Right

Left

Up

Down

• Diagonal Line Detection

Right

Left

• Global Connectivity Detection S-CNN

iterate times

one pixel of the image load an image on

the state that has one black pixel that belongs

to the test image

• Hole Filling S-CNN

• Histogram Generation S-CNN

iterate times

Row

Column

• Contour Extraction S-CNN

• Gradient Detection S-CNN

less than 4 ones in the neighborhood implies white

more than 6 ones in the neighbor implies white

black for the other cases

• Logical AND S-CNN

Image

Image

• Logical OR S-CNN

Image

Image

• Threshold

replace the cycle ramp value with the threshold value and

run a complete cycle

V. DISCUSSION

The CNN paradigm is based on a solid mathematical foun-
dation and theory with a potential in image-processing applica-
tions. The proposed digital S-CNN architecture is general in the
sense that the core cell can implement any Boolean function. In
addition, the programming of tasks on the S-CNN platform is
intuitive and can be done by writing down the truth table of the
associated one-step logic function, as was illustrated in the ex-
amples in Section IV of the paper.

The architecture is also scalable, as a consequence of the
broadcast mechanism used to communicate the information to
all cells, i.e., the processing speed is independent of the size of
the array. Intra-die communication scales well and even with to-
days technologies (3.3 V) digital signaling across the size of the
whole array can be done in the many hundreds of Mbits/s at a
cost of about 20 pJ per line. For an array with 1 million pixels,
and a required throughput of frame rate of 16 ms, the overall cost
for the ramp is approximately 20 mW. This is where most of the
power will be dissipated in the system. The power for the single
slope parallel A/D converter in the pixel is approximately the
same i.e., 20 mW. The overall power dissipation for the whole
system is approximately 40 mW. This is a very good number
and it is between two to three orders of magnitude lower with
multi-DSP or field-programmable gate array solutions that will
be necessary to achieve the above throughput.

Perhaps, the most important aspect of the described S-CNN
platform is that it provides a feasible digital realization of a CNN
processor, with all the advantages of scaling, power and speed,
which are typical of digital systems and Moore’s law.
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