
Chapter 9

Estimating circuit speed

9.1 Counting gate delays

The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI
logic gates that the input signals must propagate through to become output signals. This is a fairly
straightforward method, except for the fact that a circuit symbol may actually be composed of
multiple gates.

For instance, in Figure 9.1, the S0 is computed from the X0, Y0 and Carry in in 3 gate delays
instead of 2, because the full adder is composed of two VLSI logic gates. One of the gates computes
the carry from the three inputs, while the other computes the sum from the three inputs and the
carry output. This is why the carry from the first full adder to the second full adder is computed in
only two gate delays.
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Figure 9.1: Two bit adder with computed gate delay.

Other symbols such as the AND and OR logic gates also hide multiple VLSI logic gates. Since
the AND logic gate cannot be created directly, the logic gate must be constructed from a NAND
logic gate and an inverter or from two inverters and a NOR gate. Similarly, the OR logic gate must
be constructed from a NOR logic gate and an inverter or from two inverters and a NAND gate.

If the adder is optimized as described in Chapter 7 to eliminate inverters from the carry chain,
then the gate delay changes as well, as shown in Figure 9.2. Note that in the Figure 9.2(a), the
carry from the first full adder reaches the second full adder with same gate delay as the inverted
inputs. In contrast, in Figure 9.2(b), the carry from the first full adder reaches the second full adder
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with two gate delays, so that the sum takes longer to compute (although it will still be faster then
the unoptimized adder of Figure 9.1 when extended to three or more bits).
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Figure 9.2: Optimized two bit adder.

9.2 Computing RC delays
Counting gate delays is a poor method for estimating circuit speed. It doesn’t take into account
the speed reduction that occurs when a VLSI logic gate drives many other VLSI logic gates, or the
difference between series and parallel transistor structures within a VLSI logic gate. It also doesn’t
account for the effect of the transistor sizes on the VLSI logic gate’s speed.

A better method is to model each transistor as a capacitor and a resistor. In this method, each
transistor is modeled as having a capacitor between its gate terminal and ground, and a resistor and
an ideal switch in series between the source and drain terminals as shown in Figure 9.3. The ca-
pacitor models the effect of driving multiple VLSI logic gates, and the resistor models the reduced
speed of the circuit when the transistors are connected in series. As before the switch is open or
closed depending on the logic level at the gate terminal.
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Figure 9.3: RC transistor model.

With this new transistor model, we can model the interaction between two logic gates. For
instance, the model converts the two inverters shown in Figure 9.4(a) first into the circuit shown in
Figure 9.4(b), then into the circuit shown in Figure 9.4(c).
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Figure 9.4: Modeling two inverters.

When the output of the first inverter transitions from 1 to 0, the resistor originating from the
NFET in the first inverter will discharge the capacitance originating from the transistors in the
second inverter. Hence the output will follow the exponential decay described by:

Vout = Vdd · e
−t

RNC

where t is time, RN is the NFET resistance and C is the total capacitance at the input of the second
inverter (that is, the sum of the capacitance CN originating from the NFET and the capacitance CP

originating from the PFET). This exponential decay is sketched in Figure 9.5(a), and the product
RNC is referred to as the time constant.

When the output of the first inverter transitions from 0 to 1, we also get an exponential decay,
but one that approaches Vdd asymptotically instead of Gnd. This exponential decay is described
by:

Vout = Vdd · (1− e
−t

RPC )

and is sketched in Figure 9.5(b). The resistance RP in this equation is the resistance originating
from the PFET, not the NFET, and may be quite different, so that the time constant RPC may also
be quite different.
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Figure 9.5: Exponential decays. (a) Decay to Gnd. (b) Decay to Vdd.
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9.3 Effects of device sizing
Consider the two transistors shown in Figure 9.6(a). We can draw these two transistors in a lay-
out by drawing a vertical diffusion (or active) rectangle with two separate horizontal polysilicon
rectangles as shown in Figure 9.6(b). However, since the gates of both transistors are connected
together, we can move the polysilicon rectangles towards one another until they touch as shown
in Figure 9.6(c). This results in a single transistor of length L which is twice the length of the
individual original transistors. Since the resistance of two series resistors adds and the capacitance
of two parallel capacitors also adds, we can conclude that:

RN ∝ L and CN ∝ L
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Figure 9.6: Series transistors with common gate. (a) Schematic. (b) Layout with separate polysili-
con rectangles. (c) Layout with merged polysilicon rectangles.

We can perform the same exercise with parallel transistors as shown in Figure 9.7 to observe
the effect of the width W. Since the conductance (reciprocal of resistance) of two parallel resistors
adds and the capacitance of two parallel capacitors also adds, we conclude that:

RN ∝
1

W
and CN ∝ W
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Figure 9.7: Parallel transistors with common gate. (a) Schematic. (b) Layout with separate diffu-
sion rectangles. (c) Layout with merged diffusion rectangles.
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Similar conclusions hold for PFETs, so that in summary, we have:

RN, RP ∝
L
W

and CN, CP ∝ L ·W

9.4 Adjusting device width and length
In section 9.2 we found that the shape of the transient waveform for a high to low transition is an
exponential decay. This means that the fall-time (the time from when the output starts to fall to
when it reaches the input threshold of the next gate) is proportional to the time constant. This is
because if Vinv is the input threshold for an inverter, then the fall-time tf is given by:

Vinv = Vdd · e
−tf
RNC ⇔ tf = RNC ln

(Vdd
Vinv

)
⇒ tf ∝ RN · (CN + CP)

Similarly, the rise-time tr is also proportional to the time constant:

Vinv = Vdd · (1− e
−tr
RPC ) ⇔ tr = RPC ln

( Vdd
Vdd− Vinv

)
⇒ tr ∝ RP · (CN + CP)

If Vinv = Vdd
2

then the average propagation delay is proportional to the average time constant
tRC:

tpd =
tf + tr

2
∝ RN + RP

2
· (CN + CP) ⇒ tpd ∝ tRC

where

tRC = RC and R =
RN + RP

2
, C = CN + CP

It is important to note that the resistance in these expressions is the output resistance of the tran-
sistors in the driving logic gate (such as the leftmost inverter in Figure 9.4) while the capacitance
is the input capacitance of the transistors in the driven logic gate (such as the rightmost inverter in
Figure 9.4).

Obviously, if all transistors have the same width and length the distinction is superfluous. How-
ever, suppose that we make the transistors in the driving logic gate αw wider than the minimum
size that we can draw, and the transistors in the driven logic gate βw wider than the minimum size
that we can draw. Then the conductance of the driving logic gate increases by a factor of αw, and
the capacitance of the driven logic gate increases by a factor of βw. The effect on the propagation
delay is:

tRC =
RN + RP

2αw

· βw (CN + CP) =
βw

αw

RC

Hence, to improve speed (i.e. reduce the propagation delay), we generally want to make the
driving transistors wider and the driven transistors narrower. (Note that this relationship is some-
what approximate, because changing the device widths also affect the Vinv.)

If on the other hand, if we make the transistors in the driving logic gate αl longer than the
minimum size that we can draw, and the transistors in the driven logic gate βl longer than the
minimum size that we can draw, then the resistance of the driving logic gate increases by a factor
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of αl, and the capacitance of the driven logic gate increases by a factor of βl. The effect on the
propagation delay is:

tRC = αl
RN + RP

2
· βl (CN + CP) = βl · αl ·RC

Hence, to improve speed we generally want to make all transistors shorter.

9.5 Optimizing device width and length
Since increasing the width of the transistors can both improve and degrade the performance of a
circuit, it is necessary to find the optimal widths on a case by case basis. Suppose we have three
inverters as shown in Figure 9.8.
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Figure 9.8: Time constant calculation for three inverters.

If we increase the width of the transistors in the middle inverter by α, then the overall time
constant becomes:

tRC(α) = t
′

RC + t
′′

RC =
(
α +

1

α

)
RC

To optimize the value of α, we set the first derivative of tRC(α) to zero as follows:

dtRC(α)

dα
=
(
1− 1

α2

)
RC = 0 ⇒ α = 1

We should not conclude from this exercise that adjusting the transistor widths is pointless.
Indeed, suppose that the middle inverter drives multiple inverters as shown in Figure 9.9.
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Figure 9.9: Time constant calculation for three inverters with a fan-out of 4.
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The same optimization now yields:

dtRC(α)

dα
=
(
1− 4

α2

)
RC = 0 ⇒ α = 2

9.6 General optimization guidelines
Suppose we have n+1 inverters as shown in Figure 9.10, labeled from 0 to n, where the width of
the transistors in inverter i is αi times wider than the minimum (and α0 = 1).
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Figure 9.10: Time constant calculation for many inverters.

The overall time constant is the sum of all the individual time constants:

tRC(α1, . . . , αn) =
n∑

i=1

ti
RC = RC

n∑
i=1

αi

αi−1

Since tRC() is now a function of multiple variables, optimization require setting all the partial
derivatives to zero as follows:

δtRC(α1, . . . , αn)

δαi

= 0 for i = 1 . . . n

For every αi, there are only two terms in the summation that contain αi: RC αi
αi−1

and RC αi+1

αi
.

Hence:
δtRC(α1, . . . , αn)

δαi

=

(
1

αi−1

− αi+1

α2
i

)
RC = 0 ⇒ α2

i = αi−1 · αi+1

This gives us the recurring relation:

αi+1 =
α2

i

αi−1

and α0 = 1

for which the solution is (proved by induction):

αi = αi and α =
n√N

where N = αn. This shows that the optimal transistor sizing yields a geometric progression, where
each inverter is α times bigger than the previous one.

The overall time constant is now:

tRC = RC
n∑

i=1

αi

αi−1

= RC
n∑

i=1

α = nRCα = nRC
n√N
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If we allow n to vary while keeping the size of the last inverter constant, we find that we
can also optimize the number of inverters to minimize the overall time constant. To facilitate the
minimization, we will instead minimize the time constant as a function of α. Since:

α =
n√N ⇔ αn = N ⇔ n ln α = ln N ⇔ n =

ln N
ln α

we can express the overall time constant’s dependence on α as:

tRC(α) =
ln N
ln α

RCα = RC ln N
α

ln α

If we plot α
ln α

as a function of α, we get the curve shown in Figure 9.11.

-

6

α

α
ln α

1 2 3 4 5 6 7 8 9e
2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

2
ln 2

e

Figure 9.11: α
ln α

as a function of α.

Setting the derivative of tRC(α) to zero we get:

dtRC(α)

dα
= RC ln N

ln α− 1

(ln α)2
= 0 ⇒ ln α = 1

The optimal value for α and n is therefore:

α = e and n = ln N
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