520.216

Lecture 5 MOS Transistor Model

Andreas G. Andreou

MOS transistor revisited (I)

From: Introduction to VLSI Mead and Conway

Figure 2.2: Semiconductor charge per cm² vs. surface potential for a MOS structure doped at $N_A = 7 \times 10^{15}/\text{cm}^3$.

MOS transistor revisited (II)

From: Introduction to VLSI Mead and Conway

MOS Transistor

SYMMETRIC MOS MODEL

 $I_{SD} \propto F\left(V_{GB}, V_{SB}\right) - F\left(V_{GB}, V_{DB}\right)$

WEAK INVERSION REGION

 $I_{SD} \propto G(V_{GB}) \left[H(V_{SB}) - H(V_{DB}) \right]$

Weak (vs) Strong Inversion

Device operation characterized by the form of the current as a function of the bias voltage between the gate and the source terminals (Vgs)

Weak Inversion (also known as Subthreshold) 520.216 Introductio to VLSI A.G. Andreou

Conduction (vs) Saturation

Device operation characterized by the form of the current as a function of the bias voltage between the DRAIN and the source terminals (Vds)

Conduction (also known as Ohmic) 520.216 Introductio to VLSI A.G. Andreou

MOS Model (above threshold): simple and non-symmetric!

$$If \quad V_{GS} < 0$$
$$I_{DS} = 0$$

If
$$V_{DS} > V_{GS} - V_{TO}$$

$$I_{DS} = \left(\frac{W}{L}\right) \left(\frac{UO}{2}\right) \frac{\varepsilon_0 \varepsilon_r}{TOX} (V_{GS} - V_T)^2$$

If
$$V_{DS} < V_{GS} - V_{TO}$$

$$I_{DS} = \left(\frac{W}{L}\right) UO \frac{\varepsilon_0 \varepsilon_r}{TOX} \left(\left(V_{GS} - V_T\right) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

$$V_T = V_{TO} + GAMMA \left(\sqrt{PHI - V_{BS}} - \sqrt{PHI} \right)$$

 $\epsilon_0 = 8.85 \ 10^{-12} \text{ F/m}$ is the absolute permittivity

 ε_r = relative permittivity, equal to 3.9 in the case of SiO2 (no unit)

Mos Model 1 parameters			
Parameter	Definition	Typical Value 0.12µm	
		NMOS	PMOS
VTO	Theshold voltage	0.4V	-0.4V
U0	Carrier mobility	0.06m ² /V-s	0.02m ² /V-s
TOX	Gate oxide thickness	2nm	2nm
PHI	Surface potential at strong inversion	0.3V	0.3V
GAMMA	Bulk threshold parameter	$0.4 \text{ V}^{0.5}$	$0.4 \text{ V}^{0.5}$
W	MOS channel width	1µm	1µm
L	MOS channel length	0.12µm	0.12µm

MOS Model (sub-threshold)

NMOS

$$I_{D} \equiv I_{DS} = S I_{n0} \exp\left(\frac{\kappa_{n} V_{GB}}{V_{t}}\right) \left[\exp\left(\frac{-V_{SB}}{V_{t}}\right) - \exp\left(\frac{-V_{DB}}{V_{t}}\right)\right]$$

PMOS

$$I_{D} \equiv I_{SD} = S I_{p0} \exp\left(\frac{-\kappa_{p}V_{GB}}{V_{t}}\right) \left[\exp\left(\frac{V_{SB}}{V_{t}}\right) - \exp\left(\frac{V_{DB}}{V_{t}}\right)\right]$$

$$V_{t} \equiv \frac{kT}{q} \qquad \kappa \equiv \frac{1}{\eta} \equiv \frac{C_{ox}}{C_{ox} + C_{dep}} \qquad S = \frac{W}{L}$$

MOS MISMATCH

520.216 Introductio to VLSI A.G. Andreou

FLOATING GATE MOS (FGMOS)

Substrate

MOS CAPACITANCE MODEL

MOS

FGMOS

