Final Project Introduction to RFID (Radio Frequency IDentification)

Andreas G. Andreou

Radio **F**requency **D**entification

- Tag wirelessly sends bits of data when it is triggered by a reader
- Power source not required for passive tags... a defining benefit
- Superior capabilities to barcode:
 - Non Line of Sight
 - Hi-speed, multiple reads
 - Can read and write to tags
 - Unit specific ID

Four main frequencies:

	Frequency	Distance	Example Application
LF	125khz	Few cm	Auto- Immobilizer
HF	13.56Mhz	1m	Building Access
UHF	900Mhz	~7m	Supply Chain
µwave	2.4Ghz	10m	Traffic Toll

Lecture Objectives:

- Explain technical principles behind RFID
- Provide overview of RFID technology
- Discuss architecture for RFID chips

Outline

- RFID history
- Technical principles
- Tag overview
- Reader overview
- Adoption challenges
- The UHF market
- The future??

RFID History

- First Bar code patents 1930s
- First use of RFID device 2nd world war Brittan used RFID-like technology for Identify- Friend or Foe
- Harry Stockman October 1948 Paper Communication by means of reflected power (The proceedings of the Institute of Radio Engineers)
- First RFID Patent 1973
- Auto-ID center founded at MIT 1999
 - Standardization effort taken over by EPC Global (Electronic Product Code)
- Current thrust primarily driven by Wal-Mart and DoD
 - Automate Distribution:
 - Reduce cost (man power, shipping mistakes)
 - Increase sales (keep shelves full)
 - DoD Total Asset Visibility Initiative

- Near field (LF, HF): inductive coupling of tag to magnetic field circulating around antenna (like a transformer)
 - Varying magnetic flux induces current in tag. Modulate tag load to communicate with reader
 - field energy decreases proportionally to 1/R³ (to first order)
- Far field (UHF, microwave): backscatter.
 - Modulate back scatter by changing antenna impedance
 - Field energy decreases proportionally to 1/R
- Boundry between near and far field: R = wavelength/2 pi so, once have reached far field, lower frequencies will have lost significantly more energy than high frequencies
- Absorption by non-conductive materials significant problem for microwave frequencies

Basic Principle

Traditional RFID Market Segments

Auto Immobilizers

Automated Vehicle Id

- Isolated systems
- Simple reads
- Slow growth

Access Control

The New Mkt Segment Consumer Pkg Goods Supply Chain

Wal-Mart

- June '03 announcement
- Pallet/Case tagging -Top 100 suppliers Jan '05 -Other 30K by end of '06
- 4 Billion tags/year
- 300k direct readers
- 18 Million indirect readers

- End to end systems
- Complex reads
- Emerging market

Usage Models

Conveyor Belt

Container, Pallet, Munitions

Printers

Dock Door

Forklift

Smart Shelves

Point of Sale

Tags

Types of Tags

– Passive

 Operational power scavenged from reader radiated power

– Semi-passive

Operational power provided by battery

– Active

Operational power provided by battery - transmitter built into tag

Generic Tag Architecture

(Highly Simplified)

What is on a chip

Proceedings of the 41st Annual Conference on Information Sciences and Systems (CISS07), Baltimore, 14-16 March 2007.

Architecture of a μ RFID with integrated antenna in 3D SOI-CMOS

Edward Choi* and Andreas Andreou* *Department of Electrical and Computer Engineering The Johns Hopkins University, Baltimore, MD Email: echoi, andreou@jhu.edu

RFID Antennas:

- Gate antennas (orthogonal use)
- Patch antennas
- Circular polarized
- Omni directional antennas
- Stick antennas (directional)
- Di-pole or multi-pole antennas
- Linear polarized
- Adaptive, beam-forming or phased-array element antennas

Electronic Product Code

EPC Data Standard-96 bit

Header - Tag version number EPC Manager - Manufacturer ID Object class - Manufacturer's product ID Serial Number - Unit ID

With 96 bit code, 268 million companies can each categorize 16 million different products where each product category contains up to 687 billion individual units

Note: 64 bit versions also defined, 256 bit version under definition

Tag Details

	LF	HF	UHF	Microwave
Freq. Range	125 - 134KHz	13.56 MHz	866 - 915MHz	2.45 - 5.8 GHz
Read Range	10 cm	1M	2-7 M	1M
Market share	74%	17%	6%	3%
Coupling	Magnetic	Magnetic	Electro magnetic	Electro magnetic
Existing standards	11784/85, 14223	18000-3.1, 15693,14443 A, B, and C	EPC C0, C1, C1G2, 18000-6	18000-4
Application	Smart Card, Ticketing, animal tagging, Access, Laundry	Small item management, supply chain, Anti-theft, library, transportation	Transportation vehicle ID, Access/Security, large item management, supply chain	Transportation vehicle ID (road toll), Access/ Security, large item management, supply chain

Competing UHF Protocols (EPC only)

	Read Rate	Read or Read/Write	Tag Cost	Privacy	Security	Global Standard
Class 0	NA: 800 reads/sec EU: 200 reads/sec	Read Only	\$\$	24 bit password	Reader broadcasts OID or Anonymous modes with reduced throughput	No
Class 0+	NA:800 reads/sec EU:200 reads/sec	Read & Write	\$\$	See above	See above	No
Class 1	NA:200 reads/sec EU: 50 reads/sec	Read & Write	\$	8 bit password	Reader broadcasts partial OID	No
Class 1 Gen 2* (UHF Gen2)	NA:1700 reads/sec EU: 600 reads/sec	Read & Write	?	32 bit password and concealed mode	Authentication and Encryption	Yes

* Class 1 Gen 2 is still in development, expected to close in Q4, 2004

Class 0 Protocol

Backscatter	North America
Class 0 Tag Backscatter Frequency	3.3 Mhz for data ``1" 2.2 Mhz for data ``0"
Modulation Format	FSK

Typical data stored in tag:

- 96 bit EPC code
- 24 bit kill code
- 16 bit Cyclic Redundancy Check (CRC)

Reader/tag communication modes:

- 1. Start up signals (power up tags and sync. with them)
- 2. Tree Traversal (read individual tags)
- 3. Communication (send commands to tags)

Data rates: fast and slow defined: fast (12.5 micro sec bit period) and slow (62.5 micro second bit period) --- either 20% or 100% modulation depths

Class 0 Signaling

EPC : Reader-tag Communication

Basic Architecture

Modulation frequency/modulation signal:

12.5 Hz or 25 Hz, rectangle 50%

Default Class 0 Reader Communication Sequence

Tag Singulation Process

read individual tag from group of all tags in range of reader

Basic process:

- 1. All tags within range of reader backscatter their MSB to the reader.
- 2. Reader responds with either a 1 or a 0.
- 3. If tag bit equals reader bit, tag backscatters the next bit in it's code . If instead, tag bit does not equal reader bit, tag goes mute for remainder of singulation.
- 4. Process continues until reader has completely read a single tag.
- 5. Reader conducts consecutive singulations until all tags in its range are read.
- 6. Reader can interrupt the singulation process to send commands to a single tag, a subset of all tags in range, or globally to all tags in range.

Readers

Close coupled magnetic reader

Close coupled capative reader

UHF Reader Standards

GEO / Country	Frequency Band
North America	900 – 930 MHz
EMEA	866 – 868 MHz
Korea	908.5 — 914 MHz
Australia	918 – 926 MHz
China (PRC)	TBD
Japan	TBD

Transmitter	North America
Output Freq. Band	902 – 928 Mhz
Output Power	4 watts EIRP
TX Channel step	500Khz
Hop frequency	2.5 to 20 times per second
TX Channels	902.75, 903.25,, 927.25Mhz
Modulation	Typically ASK 20% to 100% modulation depth

Reader Implementation Challenges

- Reader must deliver enough power from RF field to power the tag
- Reader must discriminate backscatter modulation in presence of carrier at same frequency
- 70db magnitude difference between transmitted and received signals
- Interference between readers
- Hugh volume of tag data readers need to filter data before releasing to enterprise network

RFIDs Today!

Cost:

٠

- Tags currently 50 cents need to be 5 cents or less
- Readers currently thousands of dollars need to be hundreds of dollars
- Implementation distribution centers relatively low tech need networking, power, etc.
 - Cost benefit must be significant enough to justify RFID cost:
 - Retailers operate with small margins (< 5%). If RFID can increase operational efficiency by 1% = major competitive advantage
- Read accuracy:
 - accuracy not established needs to approach 100%:
 - Metal containers, liquids, Etc. impact tag readability
 - Taq/reader orientation: polarization effects
 - Reader configuration: cooperative networks of readers
 - Interference from other readers and other radiators
- Design Robustness:
 - Needs to be robust enough to survive/function in warehouse environments
- Security:
 - Read security, Data security, etc.
- Privacy:
 - See next slide

Privacy Issues

The Future

What fundamental changes does RFID herald in?

•What are the probable consequences of these changes?

Protocol Details

Class 0 Tag Start-up Signals: Reset and Oscillator Calibration

Class 0 Tag Start-up Signals: Data Calibration

Reader Bit Definitions

Tag Backscatter

Possible Reader/Tag Communication Pairs

